
ModbusUnsolicited Serial Driver

© 2016 PTC Inc. All Rights Reserved.

Modbus Unsolicited Serial Driver

TableofContents
Modbus Unsolicited Serial Driver 1

Table of Contents 2

Modbus Unsolicited Serial Driver 3

Overview 4

Setup 5

Channel Setup 5

Channel Properties 6

Channel Properties - General 6

Channel Properties - Serial Communications 7

Channel Properties - Write Optimizations 9

Channel Properties - Timing 10

Device Setup 11

Device Properties - General 12

Device Properties - Scan Mode 13

Device Properties - Memory 14

Memory Addressing 15

ModemSetup 17

Data Types Description 18

Address Descriptions 19

Modbus Addressing 19

Daniels/Enron Addressing 20

Event Log Messages 23

Address size changed. | Previous Size = <number>, Current Size = <number>. 23

Error Mask Definitions 23

Modbus Exception Codes 24

Index 25

www.kepware.com

2

Modbus Unsolicited Serial Driver

Modbus Unsolicited Serial Driver
Help version 1.039

CONTENTS

Overview
What is the Modbus Unsolicited Serial Driver?

Device Setup
How do I configure a device for use with this driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location in an unsolicited device?

Event Log Messages
What messages does the Modbus Unsolicited Serial Driver produce?

www.kepware.com

3

Modbus Unsolicited Serial Driver

Overview
The Modbus Unsolicited Serial Driver provides a reliable way to connect Modbus serial devices to client
applications; including HMI, SCADA, Historian, MES, ERP, and countless custom applications. It simulates up
to 255 Modbus slave devices on a serial communications network. Other devices or PCs can communicate
with each simulated Modbus slave device using the Modbus protocol.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

www.kepware.com

4

Modbus Unsolicited Serial Driver

Setup
Supported Devices
Modbus compatible devices

Communication Protocol
Modbus RTU Protocol

Supported Function Codes

l Read Coil Status-code 01H

l Read Input Status-code 02H

l Read Holding Registers-code 03H

l Read Internal Registers-code 04H

l Force Single Coil-code 05H

l Preset Single Register-code 06H

l Diagnostic Loopback-code 08H

l Force Multiple Coils-code 0FH

l Preset Multiple Registers-code 10H

Note: For all other function codes, the driver returns an exception code 01H (function not implemented)
to the requesting device.

Broadcast Commands
The Modbus Unsolicited Serial Driver has the ability to receive broadcast write messages. Broadcast
messages are defined by using a station ID of 0. When the driver receives a write message (Function 05H,
06H, 0FH, or 10H), with a station ID of 0 the value to be written is placed in all devices defined under the
channel on which the command was received. Essentially the broadcast command can be used to send a
single piece of data to every device that has been configured in the driver at the same time.

For this driver, the terms Slave and Unsolicited are used interchangeably.

Channel Setup

Serial Communication / Port Settings
Baud Rate: 1200, 2400, 9600, 19200
Parity: Odd, Even, None
Data Bits: 8
Stop Bits: 1, 2
Flow Control: When using an RS232/RS485 converter, the type of flow control that is required depends upon
the needs of the converter. Some converters do not require any flow control and others require RTS flow.
Consult the converter's documentation in order to determine its flow requirements. We recommend using
an RS485 converted that provides automatic flow control.

Notes:

1. When using the manufacturer's supplied communications cable, it may be necessary to choose a
flow control setting of RTS or RTS Always.

2. Not all devices support the listed configurations.

Timing

www.kepware.com

5

Modbus Unsolicited Serial Driver

See Channel Properties - Timing

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

Channel Properties
This server supports the use of simultaneous multiple communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same
communications driver or with unique communications drivers. A channel acts as the basic building block of
an OPC link.

The properties associated with a channel are broken in to logical groupings. While some groups are specific
to a given driver or protocol, the following are the common groups:

General
Ethernet or Serial Communications
Write Optimization
Advanced

Channel Properties - General
This server supports the use of simultaneous multiple communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same
communications driver or with unique communications drivers. A channel acts as the basic building block of
an OPC link. This group is used to specify general channel properties, such as the identification attributes
and operating mode.

Identification

Name: User-defined identity of this channel. In each server project, each channel name must be unique.
Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: User-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Selected protocol / driver for this channel. This property specifies the device driver that was selected
during channel creation. It is a disabled setting in the channel properties.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,

www.kepware.com

6

Modbus Unsolicited Serial Driver

after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. With this in mind, changes to the properties
should not be made once a large client application has been developed. Utilize the User Manager to prevent
operators from changing properties and restrict access rights to server features.

Diagnostics

Diagnostics Capture: When enabled, this optionmakes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead
processing, it is recommended that they be utilized when needed and disabled when not. The default is
disabled.
For more information, refer to "Communication Diagnostics" in the server help.

Not all drivers support diagnostics. To determine whether diagnostics are available for a particular driver, open
the driver information and locate the "Supports device level diagnostics" statement.

Channel Properties - Serial Communications
Serial communication properties are available to serial drivers and vary depending on the driver, connection
type, and options selected. Below is a superset of the possible properties.
Click to jump to one of the sections: Connection Type, Serial Port Settings or Ethernet Settings, and
Operational Behavior.

Note: With the server's online full-time operation, these properties can be changed at any time. Utilize
the User Manager to restrict access rights to server features, as changes made to these properties can
temporarily disrupt communications.

Connection Type

Physical Medium: Choose the type of hardware device for data communications. Options include
COM Port, None, Modem, and Ethernet Encapsulation. The default is COM Port.

l None: Select None to indicate there is no physical connection, which displays the Operation with no
Communications section.

l COM Port: Select Com Port to display and configure the Serial Port Settings section.

l Modem: Select Modem if phone lines are used for communications, which are configured in the
Modem Settings section.

www.kepware.com

7

Modbus Unsolicited Serial Driver

l Ethernet Encap.: Select if Ethernet Encapsulation is used for communications, which displays the
Ethernet Settings section.

l Shared: Verify the connection is correctly identified as sharing the current configuration with another
channel. This is a read-only property.

Serial Port Settings

COM ID: Specify the Communications ID to be used when communicating with devices assigned to the
channel. The valid range is 1 to 9991 to 16. The default is 1.

Baud Rate: Specify the baud rate to be used to configure the selected communications port.

Data Bits: Specify the number of data bits per data word. Options include 5, 6, 7, or 8.

Parity: Specify the type of parity for the data. Options include Odd, Even, or None.

Stop Bits: Specify the number of stop bits per data word. Options include 1 or 2.

Flow Control: Select how the RTS and DTR control lines are utilized. Flow control is required to communicate
with some serial devices. Options are:

l None: This option does not toggle or assert control lines.

l DTR: This option asserts the DTR line when the communications port is opened and remains on.

l RTS: This option specifies that the RTS line is high if bytes are available for transmission. After all
buffered bytes have been sent, the RTS line is low. This is normally used with RS232/RS485 converter
hardware.

l RTS, DTR: This option is a combination of DTR and RTS.

l RTS Always: This option asserts the RTS line when the communication port is opened and remains
on.

l RTS Manual: This option asserts the RTS line based on the timing properties entered for RTS Line
Control. It is only available when the driver supports manual RTS line control (or when the properties
are shared and at least one of the channels belongs to a driver that provides this support).
RTS Manual adds an RTS Line Control property with options as follows:

l Raise: This property specifies the amount of time that the RTS line is raised prior to data
transmission. The valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Drop: This property specifies the amount of time that the RTS line remains high after data
transmission. The valid range is 0 to 9999 milliseconds. The default is 10 milliseconds.

l Poll Delay: This property specifies the amount of time that polling for communications is
delayed. The valid range is 0 to 9999. The default is 10 milliseconds.

Tip: When using two-wire RS-485, "echoes" may occur on the communication lines. Since this
communication does not support echo suppression, it is recommended that echoes be disabled or a RS-485
converter be used.

Operational Behavior

l Report Comm. Errors: Enable or disable reporting of low-level communications errors. When
enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same
errors are not posted even though normal request failures are. The default is Enable.

www.kepware.com

8

Modbus Unsolicited Serial Driver

l Close Idle Connection: Choose to close the connection when there are no longer any tags being
referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been
removed before closing the COM port. The default is 15 seconds.

Ethernet Settings
Ethernet Encapsulation provides communication with serial devices connected to terminal servers on the
Ethernet network. A terminal server is essentially a virtual serial port that converts TCP/IP messages on the
Ethernet network to serial data. Once the message has been converted, users can connect standard devices
that support serial communications to the terminal server. The terminal server's serial port must be
properly configured to match the requirements of the serial device to which it is attached. For more
information, refer to "How To... Use Ethernet Encapsulation" in the server help.

l Network Adapter: Indicate a network adapter to bind for Ethernet devices in this channel. Choose a
network adapter to bind to or allow the OS to select the default.
Specific drivers may display additional Ethernet Encapsulation properties. For more information, refer

to Channel Properties - Ethernet Encapsulation.

Modem Settings

l Modem: Specify the installed modem to be used for communications.

l Connect Timeout: Specify the amount of time to wait for connections to be established before
failing a read or write. The default is 60 seconds.

l Modem Properties: Configure the modem hardware. When clicked, it opens vendor-specific modem
properties.

l Auto-Dial: Enables the automatic dialing of entries in the Phonebook. The default is Disable. For
more information, refer to "Modem Auto-Dial" in the server help.

l Report Comm. Errors: Enable or disable reporting of low-level communications errors. When
enabled, low-level errors are posted to the Event Log as they occur. When disabled, these same
errors are not posted even though normal request failures are. The default is Enable.

l Close Idle Connection: Choose to close the modem connection when there are no longer any tags
being referenced by a client on the channel. The default is Enable.

l Idle Time to Close: Specify the amount of time that the server waits once all tags have been
removed before closing the modem connection. The default is 15 seconds.

Operation with no Communications

l Read Processing: Select the action to be taken when an explicit device read is requested. Options
include Ignore and Fail. Ignore does nothing; Fail provides the client with an update that indicates
failure. The default setting is Ignore.

Channel Properties - Write Optimizations
As with any OPC server, writing data to the device may be the application's most important aspect. The
server intends to ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties that can be used to meet specific needs or improve
application responsiveness.

www.kepware.com

9

Modbus Unsolicited Serial Driver

Write Optimizations

Optimization Method: controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client
applications is sent to the target device. This mode should be selected if the write operation order or
the write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.

Note: This option does not attempt to optimize writes to Boolean values. It allows users to
optimize the operation of HMI data without causing problems with Boolean operations, such as a
momentary push button.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows
optimization for applications with continuous writes versus a more balanced back and forth data flow.

Note: It is recommended that the application be characterized for compatibility with the write
optimization enhancements before being used in a production environment.

Channel Properties - Timing

www.kepware.com

10

Modbus Unsolicited Serial Driver

Communications Timeout: Specify the amount of time that the driver waits for an incoming request before
setting all unsolicited device tags on the channel to a Bad quality. After the Communications Timeout
passes, the only way to reset the timeout and allow all tags be processed normally is to reestablish
communications with the device or disable the timeout by setting Communications Timeout to 0 (zero) in the
Timing group of channel properties. Disabled: 0; Enabled: 1-->64,800 seconds (18 hours).

Request Timeout: Specify the amount of time that the driver waits for a complete request frame to be
received. The elapsed time is calculated starting from the instant the first byte of a new request is received.
If a complete request frame is not received during this time, the driver flushes received data buffers and
assume the next received byte is the start of a new request.

Tips:

This setting should be chosen carefully. Values for the Request Timeout setting may range from 0 to
30,000 ms, with a default of 0. When 0 is entered, the driver computes a reasonable timeout through
the use of the following formula:

T
default

= 1000*(Bits per Byte)*512*3 / Baud

This is three times the amount of time required to transmit a frame of 512 bytes. The number of bits
per byte includes the start bit and the number of data and stop bits specified. For example, a baud
rate of 9600 and 8 data bits, and 1 stop bit, results in a default timeout of 1600 ms. If the hardware
sends relatively short request frames and would retry a failed request in less than the default
calculation (1600 ms in this example), try configuring a shorter Request Timeout.

The Request Timeout should never be shorter than the amount of time it takes to receive the longest
request frame sent by any device on the channel. This can be computed using the following formula:

T
min

= 1000*(Bits per Byte)*(max frame length) / Baud.

Device Setup
This driver simulates up to 255 Modbus slave devices on a serial communications network.

Device Properties
Device properties are organized into the following groups. Click on a link below for details about the settings
in that group.

Identification
Operating Mode
Scan Mode
Memory
Redundancy

Supported Function Codes

l Read Coil Status-code 01H

l Read Input Status-code 02H

l Read Holding Registers-code 03H

l Read Internal Registers-code 04H

www.kepware.com

11

Modbus Unsolicited Serial Driver

l Force Single Coil-code 05H

l Preset Single Register-code 06H

l Diagnostic Loopback-code 08H

l Force Multiple Coils-code 0FH

l Preset Multiple Registers-code 10H

Note: For all other function codes, the driver returns an exception code 01H (function not implemented)
to the requesting device.

Broadcast Commands
The Modbus Unsolicited Serial Driver has the ability to receive broadcast write messages. Broadcast
messages are defined by using a station ID of 0. When the driver receives a write message (Function 05H,
06H, 0FH, or 10H), with a station ID of 0 the value to be written is placed in all devices defined under the
channel on which the command was received. Essentially the broadcast command can be used to send a
single piece of data to every device that has been configured in the driver at the same time.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

Device Properties - General

Identification

Name: User-defined identity of this device.

Description: User-defined information about this device.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.
For more information on a specific device model, see Supported Devices.

Model: The specific version of the device.

ID Format : Select how the device identity is formatted. Options include Decimal, Octal, and Hex.

ID: Modbus serial devices are assigned device IDs in the range 0 to 255.

Operating Mode

www.kepware.com

12

Modbus Unsolicited Serial Driver

Data Collection: This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not
attempted when a device is disabled. From a client standpoint, the data is marked as invalid and write
operations are not accepted. This property can be changed at any time through this property or the device
system tags.

Simulated: This option places the device into Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The item's memory map is based on the group
Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).
The default is No.

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System
tag allows this property to be monitored from the client.

2. In Simulationmode, the item's memory map is based on client update rate(s) (Group Update Rate for
OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference
the same item with different update rates return different data.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production
environment.

Device Properties - Scan Mode
The ScanMode specifies the subscribed-client requested scan rate for tags that require device
communications. Synchronous and asynchronous device reads and writes are processed as soon as
possible; unaffected by the ScanMode properties.

Scan Mode: specifies how tags in the device are scanned for updates sent to subscribed clients.
Descriptions of the options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the maximum scan rate to be used.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for
subscribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

www.kepware.com

13

Modbus Unsolicited Serial Driver

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties - Memory

Memory

Address Limit: The address range of coils and registers can be configured with any value between 9999
and 65536. The tags can be addressed up to and including the specified limit.

Notes:

1. The address range cannot be changed when the tags are being processed.

2. When the address range is changed, it is possible that a remote request (from a Modbus master)
may get rejected because the requestedmemory address is outside the new address range.

3. When the address range is changed and the new upper limit is greater than the old one, all old data
is preserved and the remaining memory is initialized to '0'. If the new upper limit is smaller then the
old one, however, only the data equal to the newmemory size is preserved and the remaining data is
lost. There may be an exception to this when dealing with Booleanmemory type.

SeeMemory Addressing for details, examples, and diagrams.

Zero-Based Addressing: By default, addresses have one subtracted when frames are constructed to
communicate with a Modbus device. If the device doesn't follow this convention, disable Zero-Based
Addressing. The default (enabled) behavior follows the convention of the Modicon PLCs.

Note: Zero-Based Addressing must be disabled when using a Daniels/Enron device.

First Word Low: Two consecutive register addresses in a Modbus device are used for 32-bit data types.
Enable if the driver should assume the first word is the low word of the 32-bit value. If First Word Low is
enabled (the default), first word low is assumed, which follows the convention of the ModiconModsoft
programming software.

Note: First Word Lowmust be disabled when using a Daniels/Enron device.

First DWord Low: Four consecutive register addresses (in two groups of two each) are used for 64-bit data
types. Users can specify whether the driver should assume the first pair (i.e., first DWord) is the low or the

www.kepware.com

14

Modbus Unsolicited Serial Driver

high DWord of the 64-bit value. If First DWord Low is enabled, the first DWord low is assumed; if disabled, the
second DWord low is assumed.

Note: First DWord Lowmust be disabled when using the Daniels/Enron Device.

OPC Quality Bad until Write: This option controls the initial OPC quality of tags attached to this driver.
When disabled, all tags have an initial value of 0 and good OPC quality. This is the default condition. When
enabled, all tags have an initial value of 0 and Bad OPC quality. The quality of a tag remains Bad until all coils
or registers referenced by the tag have been written to by a Modbus master or a client application. For
example, a tag with address 400001 and data type DWord references two holding registers: 400001 and
400002. This tag does not show Good quality until both holding registers had been written.

Memory Addressing

Accessible Memory Locations

l Output coils-00001 to 065536

l Input coils-10001 to 165536

l Internal registers-30001 to 365536

l Holding registers-40001 to 465536

These settings are configurable. For more information, refer to Memory.

The address range of coils and registers can be configured with any value between 9999 and 65536. The
tags can be addressed up to and including the specified limit.

For example, if the initial memory size is 21; this translates into 3 bytes (byte aligned) of memory for
Boolean types. If the memory size is changed to 12 (2 bytes), the smaller of the twomemory sizes is 2 bytes
and that is the amount of data that is preserved. Although users may think only 12 bits have been preserved,
16 bits (2 bytes) have been preserved. Normally this would not be noticed, because with a memory size of
12, memory can be accessed up to index 12 only. If the memory size is increased to 22 (3 bytes) the amount
of data preserved from the old memory is 2 bytes (smaller of the two). Even though 12 bits were
manipulated earlier (with a memory size of 12), old data for bits 13-16 (which may have been initialized to
some values the first time around when the memory size was 21) is preserved.

The images below apply a coil memory type to the example above for a diagrammatic explanation.

www.kepware.com

15

Modbus Unsolicited Serial Driver

www.kepware.com

16

Modbus Unsolicited Serial Driver

Step V above shows old data for bits 13-16 that were initialized in Step II. Users may expect all the bits in
Step V to be '0,' but bits 13-16 have been carried over from Step II and are still set to '1'.

Modem Setup
This driver supports modem functionality. For more information, please refer to Modem Support in the
server help documentation.

www.kepware.com

17

Modbus Unsolicited Serial Driver

Data Types Description

Data Type Description
Boolean Single bit

Word Unsigned 16-bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16-bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32-bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32-bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.

LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.

String Null terminated ASCII string

Supported within the Holding Register Range, includes HiLo LoHi byte order selection.

Double* 64-bit floating point value

The driver interprets four consecutive registers as a double precision value by making
the last two registers the high DWord and the first two registers the low DWord.

Double Example If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the
64-bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

Float* 32-bit floating point value

The driver interprets two consecutive registers as a single precision value by making
the last register the high word and the first register the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-
bit data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

*The descriptions assume the default-first DWord low data handling of 64-bit data types, and first word low
data handling of 32-bit data types.

www.kepware.com

18

Modbus Unsolicited Serial Driver

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain
specific address information for the model of interest.

Modbus Addressing
Daniels/Enron Addressing

Modbus Addressing
5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits
represent the device's data item. The maximum value is a two byte unsigned integer (65,535). Six digits are
required to represent the entire address table and item. As such, addresses that are specified in the
device's manual as 0xxxx, 1xxxx, 3xxxx, or 4xxxx are padded with an extra zero once applied to the Address
field of a Modbus tag.

Primary Table Description
0 Output Coils

1 Input Coils

3 Internal Registers

4 Holding Registers

Modbus Addressing
The following address descriptions apply to the client application's access to each simulated Modbus slave
device. The client application controls the memory of the simulated Modbus slave device; therefore, all
areas have Read/Write access. The default data types for dynamically defined tags are shown in bold.

Address Range* Data Type Access
Output Coils 000001-065536 Boolean Read/Write

Input Coils 100001-165536 Boolean Read/Write

Internal Registers 300001-365536
300001-365535
3xxxxx.0-3xxxxx.15

Word, Short, BCD
Float, DWord, Long, LBCD
Boolean, Double

Read/Write

Internal Registers As String
with HiLo Byte Order**

300001.2H-365536.240H

.Bit is string length,
range 2 to 240 bytes.

String Read Only

Internal Registers As String
with LoHi Byte Order **

300001.2L-365536.240L

.Bit is string length,
range 2 to 240 bytes.

String Read Only

Holding Registers 400001-465536
400001-465535
4xxxxx.0-4xxxxx.15

Word, Short, BCD
Float, DWord, Long, LBCD
Boolean, Double

Read/Write

Holding Registers As String
with HiLo Byte Order

400001.2H-465536.240H String Read/Write

www.kepware.com

19

Modbus Unsolicited Serial Driver

Address Range* Data Type Access
.Bit is string length,
range 2 to 240 bytes.

Holding Registers As String
with LoHi Byte Order

400001.2L-465536.240L

.Bit is string length,
range 2 to 240 bytes.

String Read/Write

*The maximum range is determined by the value set in the Memory device property. For more information,
refer toMemory.
**This address supports Function Code 04, and only applies to decimal addressing.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean. Arrays
are also supported for input and output coils (Boolean data types). There are twomethods of addressing an
array. Examples are given using holding register locations.

4xxxx [rows] [cols]

4xxxx [cols] this method assumes rows is equal to one
For Word, Short and BCD arrays, the base address + (rows *cols) cannot exceed 65536.
For Float, DWord, Long and Long BCD arrays, the base address + (rows *cols *2) cannot exceed 65535.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data
within a given register can be selected when the string is defined. The length of the string can be from 2 to
240 bytes and is entered in place of a bit number. The length must be entered as an even number. The byte
order is specified by appending either a "H" or "L" to the address.

String Examples

l To address a string starting at 400200 with a length of 100 bytes and HiLo byte order, enter:
400200.100H

l To address a string starting at 400500 with a length of 78 bytes and LoHi byte order, enter:
400500.78L

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

Daniels/Enron Addressing
The following address descriptions apply to the client application's access to each simulated Daniels/Enron
slave device. The client application controls the memory of the simulated slave device; therefore, all areas
have Read/Write access.

The default data types for dynamically defined tags are shown in bold where appropriate. The following
table assumes that the slave device has been configured for the maximum allowed address range of 0 to
65535. For more information, refer toMemory.

Address Range* Data Type Access
Output Coils 000000-065535 Boolean Read/Write

www.kepware.com

20

Modbus Unsolicited Serial Driver

Address Range* Data Type Access
Input Coils 100000-165535 Boolean Read/Write

Internal Registers 300000-365535
300000-365534
300000-365532
300000.0-365535.15

Word, Short, BCD
Float, DWord, Long,
LBCD
Double
Boolean

Read/Write

Holding Registers 400000-405000
406000-407000
408000-465535

400000-404999
406000-406999
408000-465534

400000-404999
405001-405999
406000-406999
408000-465534

400000-404999
406000-406999
407001-407999
408000-465534

400000-404997
406000-406997
408000-465532

Word, Short, BCD

DWord, LBCD

Long

Float

Double

Read/Write

Holding Registers as Booleans 400000.xx-405000.xx
405001.yy-405999.yy
406000.xx-465535.xx

xx is the bit number from
0-15
yy is the bit number from
0-31

Boolean Read/Write

Holding Registers as String with HiLo
Byte Order

400000.xxxH-405000.
xxxH
406000.xxxH-407000.
xxxH
408000.xxxH-465535.
xxxH

xxx is string length,
range 2 to 240 bytes.

String Read/Write

Holding Registers as String with LoHi
Byte Order

400000.xxxL-405000.xxxL
406000.xxxL-407000.xxxL
408000.xxxL-465535.xxxL

xxx is string length,

String Read/Write

www.kepware.com

21

Modbus Unsolicited Serial Driver

Address Range* Data Type Access
range 2 to 240 bytes.

*The maximum range is determined by the value in the Memory device property. For more information,
refer toMemory.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean. Arrays
are also supported for input and output coils (Boolean data types). There are twomethods of addressing an
array. Examples are given using holding register locations.

4xxxx [rows] [cols]

4xxxx [cols] this method assumes rows is equal to one
For Word, Short and BCD arrays, the base address + (rows *cols) cannot exceed 65535.
For Float, DWord, Long and Long BCD arrays, the base address + (rows *cols *2) cannot exceed 65534.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register contains two bytes of ASCII data. The order of the ASCII data
within a given register can be selected when the string is defined. The length of the string can be from 2 to
240 bytes and is entered in place of a bit number. The length must be entered as an even number. The byte
order is specified by appending either a "H" or "L" to the address.

String Examples

l To address a string starting at 400200 with a length of 100 bytes and HiLo byte order, enter:
400200.100H

l To address a string starting at 400500 with a length of 78 bytes and LoHi byte order, enter:
400500.78L

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

www.kepware.com

22

Modbus Unsolicited Serial Driver

Event LogMessages
The following information concerns messages posted to the Event Log pane in the main user interface.
Consult the server help on filtering and sorting the Event Log detail view. Server help contains many
commonmessages, so should also be searched. Generally, the type of message (informational, warning)
and troubleshooting information is provided whenever possible.

Address size changed. | Previous Size = <number>, Current Size = <number>.
Error Type:
Error

Possible Cause:
The address size for the specified device has been changed.

Possible Solution:
Verify the new address size is correct.

Error Mask Definitions

B = Hardware break detected
F = Framing error
E = I/O error
O = Character buffer overrun
R = RX buffer overrun
P = Received byte parity error
T = TX buffer full

www.kepware.com

23

Modbus Unsolicited Serial Driver

Modbus Exception Codes
The following data is fromModbus Application Protocol Specifications documentation.

Code
Dec/Hex

Name Description

01/0x01 ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the
server (or slave). This may be because the function code is only applicable
to newer devices, and was not implemented in the unit selected. It could
also indicate that the server (or slave) is in the wrong state to process a
request of this type. For example, because it is unconfigured and is being
asked to return register values.

02/0x02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the
server (or slave). More specifically, the combination of reference number
and transfer length is invalid. For a controller with 100 registers, a request
with offset 96 and length 4 would succeed, a request with offset 96 and
length 5 generates exception 02.

03/0x03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for
server (or slave). This indicates a fault in the structure of the remainder of
a complex request, such as that the implied length is incorrect. It
specifically does not mean that a data item submitted for storage in a
register has a value outside the expectation of the application program,
since the Modbus protocol is unaware of the significance of any particular
value of any particular register.

04/0x04 SLAVE DEVICE
FAILURE

An unrecoverable error occurred while the server (or slave) was
attempting to perform the requested action.

05/0x05 ACKNOWLEDGE The slave has accepted the request and is processing it, but a long
duration of time is required to do so. This response is returned to prevent
a timeout error from occurring in the master. The master can next issue a
Poll Program Complete message to determine if processing is completed.

06/0x06 SLAVE DEVICE
BUSY

The slave is engaged in processing a long-duration program command.
The master should retransmit the message later when the slave is free.

07/0x07 NEGATIVE
ACKNOWLEDGE

The slave cannot perform the program function received in the query. This
code is returned for an unsuccessful programming request using function
code 13 or 14 decimal. The master should request diagnostic or error
information from the slave.

08/0x08 MEMORY
PARITY ERROR

The slave attempted to read extendedmemory, but detected a parity error
in the memory. The master can retry the request, but service may be
required on the slave device.

10/0x0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways, indicates that the gateway
was unable to allocate an internal communication path from the input port
to the output port for processing the request. This usually means that the
gateway is misconfigured or overloaded.

11/0x0B GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways, indicates that no response
was obtained from the target device. Usually means that the device is not
present on the network.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

www.kepware.com

24

Modbus Unsolicited Serial Driver

Index

3

32-bit data types 18

5

5-Digit Addressing 19

6

6-Digit Addressing 19

64-bit data types 18

A

Address Descriptions 19

Address Limit 14

Address size changed. | Previous Size = <number>, Current Size = <number>. 23

Array Support 20, 22

Auto Dial 9

B

Baud Rate 5, 8

BCD 18

Boolean 18

Broadcast Commands 5, 12

C

Channel Assignment 12

Channel Properties 6

Channel Properties - General 6

Channel Properties - Write Optimizations 9

Channel Setup 5

Close Idle Connection 9

www.kepware.com

25

Modbus Unsolicited Serial Driver

COM ID 8

Communication Protocol 5

Communications Timeout 11

Connection Type 7

D

Daniels/Enron Addressing 20

Data Bits 5, 8

Data Collection 13

Data Types Description 18

Description 12

Device Properties 11

Device Setup 11

Diagnostics 7

Do Not Scan, Demand Poll Only 13

Double 18

Driver 6, 12

Duty Cycle 10

DWord 18

E

Error Mask Definitions 23

Event Log Messages 23

F

First DWord Low 14

First Word Low 14

Float 18

Flow Control 5, 8

Framing 23

Function Codes 5, 11

H

Hardware break 23

www.kepware.com

26

Modbus Unsolicited Serial Driver

Holding registers 15

I

I/O error 23

ID 12

ID Format 12

Identification 12

Idle Time to Close 9

Initial Updates from Cache 14

Input coils 15

Internal registers 15

L

LBCD 18

Long 18

M

Memory 14

Memory Addressing 15

Memory Locations 15

Modbus Addressing 19

Modbus Exception Codes 24

Model 12

Modem 9

Modem Setup 17

N

Name 12

Network Adapter 9

O

OPC Quality 15

Operational Behavior 8

www.kepware.com

27

Modbus Unsolicited Serial Driver

Optimization Method 10

Output coils 15

Overrun 23

Overview 4

P

Parity 5, 8, 23

Physical Medium 7

R

Read Processing 9

Report Comm. Errors 8-9

Request All Data at Scan Rate 13

Request Data No Faster than Scan Rate 13

Request Timeout 11

Respect Client-Specified Scan Rate 13

Respect Tag-Specified Scan Rate 14

RS232 5

RS485 5

RX buffer overrun 23

S

ScanMode 13

Serial Communication 5

Serial Communications 7

Serial Port Settings 8

Setup 5

Short 18

Simulated 13

Stop Bits 5, 8

String 18

String Support 20, 22

Supported Devices 5

www.kepware.com

28

Modbus Unsolicited Serial Driver

T

Timing 5, 10

TX buffer full 23

W

Word 18

Write All Values for All Tags 10

Write Only Latest Value for All Tags 10

Write Only Latest Value for Non-Boolean Tags 10

Write Optimizations 10

Z

Zero-Based Addressing 14

www.kepware.com

29

	Modbus Unsolicited Serial Driver
	Table of Contents
	Modbus Unsolicited Serial Driver

	Overview
	Setup
	Channel Setup
	Channel Properties
	Channel Properties - General
	Channel Properties - Serial Communications
	Channel Properties - Write Optimizations
	Channel Properties - Timing

	Device Setup
	Device Properties - General
	Device Properties - Scan Mode
	Device Properties - Memory
	Memory Addressing

	Modem Setup

	Data Types Description
	Address Descriptions
	Modbus Addressing
	Daniels/Enron Addressing

	Event Log Messages
	Address size changed. | Previous Size = <number>, Current Size = <number>.
	Error Mask Definitions

	Modbus Exception Codes

	Index
	Bookmarks
	SERVERMAIN_CONNECTION_TYPE_SECTION
	SERVERMAIN_SERIAL_PORT_SETTINGS_SECTION
	SERVERMAIN_OPERATIONAL_BEHAVIOR_SECTION
	SERVERMAIN_ETHERNET_SETTINGS_SECTION
	SERVERMAIN_MODEM_SETTINGS_SECTION
	SERVERMAIN_OPERATION_WITH_NO_COMMUNICATIONS_SECTION

