## AutomationDirect K Sequence Driver Help

© 2011 Kepware Technologies

## **Table of Contents**

| Table of Contents                                                                         | 2  |
|-------------------------------------------------------------------------------------------|----|
| AutomationDirect K Sequence Driver Help                                                   | 4  |
| Overview                                                                                  | 4  |
| Device Setup                                                                              | 5  |
| Modem Setup                                                                               | 5  |
| Tag Import Settings                                                                       | 5  |
| 205 - 305 Controller: RS232 to RJ-11                                                      | 6  |
| 305 Controller: RS232 to DCU RS232                                                        | 6  |
| 405 Controller: RS232 to DCM RS232                                                        | 6  |
| Automatic Tag Database Generation                                                         | 8  |
| Tag Hierarchy                                                                             | 8  |
| Import File-to-Server Name Conversions.                                                   | 8  |
| Importing DirectSoft Elements                                                             | 8  |
| Import Preparation: DirectSoft Steps                                                      | 8  |
| Import Preparation: OPC Server Steps1                                                     | 1  |
| Data Types Description 1                                                                  | 2  |
| Address Descriptions 1                                                                    | 3  |
| DL-05 Addressing                                                                          | 3  |
| DL-06 Addressing                                                                          | 4  |
| DL-105 Addressing                                                                         | 5  |
| DL-230 Addressing                                                                         | 5  |
| DL-240 Addressing                                                                         | 6  |
| DL-250(-1) Addressing                                                                     | 7  |
| DL-260 Addressing                                                                         | 8  |
| DL-350 Addressing                                                                         | 9  |
| DL-430 Addressing                                                                         | 20 |
| DL-440 Addressing                                                                         | 20 |
| DL-450 Addressing                                                                         | !1 |
| SG Series Addressing                                                                      | 2  |
| SL Series Addressing                                                                      | 23 |
| Error Descriptions 2                                                                      | 25 |
| Address Validation                                                                        | 25 |
| Missing address                                                                           | 25 |
| Device address ' <address>' contains a syntax error</address>                             | 25 |
| Address ' <address>' is out of range for the specified device or register</address>       | 26 |
| Device address ' <address>' is not supported by model '<model name="">'</model></address> | 26 |
| Data Type ' <type>' is not valid for device address '<address>' 2</address></type>        | 26 |
| Device address ' <address>' is Read Only</address>                                        | 26 |
| Serial Communications                                                                     | 26 |

| COMn does not exist                                                                                                | 26        |
|--------------------------------------------------------------------------------------------------------------------|-----------|
| Error opening COMn                                                                                                 | 27        |
| COMn is in use by another application.                                                                             | 27        |
| Unable to set comm parameters on COMn                                                                              | 27        |
| Communications error on ' <channel name="">' [<error mask="">]</error></channel>                                   | 27        |
| Device Status Messages                                                                                             | 27        |
| Device ' <device name="">' is not responding</device>                                                              | <b>28</b> |
| Unable to write to ' <address>' on device '<device name="">'</device></address>                                    | 28        |
| Device Specific Messages                                                                                           | 28        |
| Bad address in block [ <start address=""> to <end address="">] on device '<device name="">'</device></end></start> | 28        |
| Automatic Tag Database Generation Messages.                                                                        | 28        |
| Unable to generate a tag database for device <device name="">. Reason: Low memory resources</device>               | 29        |
| Unable to generate a tag database for device <device name="">. Reason: Import file is invalid or corrupt</device>  | 29        |
| Index                                                                                                              | 30        |

#### AutomationDirect K Sequence Driver Help

Help version 1.018

#### CONTENTS

**Overview** What is the AutomationDirect K Sequence Driver?

Device Setup

How do I configure a device for use with this driver?

#### Automatic Tag Database Generation

How can I easily configure tags for the AutomationDirect K Sequence driver?

Data Types Description What data types does this driver support?

#### Address Descriptions

How do I address a data location on an AutomationDirect K Sequence device?

#### Error Descriptions

What error messages does the AutomationDirect K Sequence driver produce?

#### Overview

The AutomationDirect K Sequence Driver provides an easy and reliable way to connect AutomationDirect K Sequence controllers to OPC Client applications, including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended for use with AutomationDirect Programmable Logic Controllers, also known as PLCDirect and Koyo.

#### **Device Setup**

#### Supported Devices

SG Series PLCs SL Series PLCs DL-05, DL-06 DL-105 DL-230, DL-240, DL-250(-1), DL-260 DL-350 DL-430, DL-440, DL-450

#### **Communication Protocol**

AutomationDirect K Sequence

#### Supported Communication Parameters

Baud Rate: 300, 600, 1200, 2400, 9600, 19200 or 38400 Parity: None, Even, or Odd Data Bits: 5, 6, 7 or 8 Stop Bits: 1 or 2

**Note:** Not all devices support the listed configurations.

#### **Ethernet Encapsulation**

This driver supports Ethernet Encapsulation, which allows the driver to communicate with serial devices attached to an Ethernet network using a terminal server. Ethernet Encapsulation mode may be invoked through the COM ID dialog in Channel Properties. For more information, refer to the main OPC Server help file.

#### **Device IDs**

Up to 90 devices may be defined. Valid Device IDs range from 1 to 90.

#### **Flow Control**

When using an RS232/RS485 converter, the type of flow control that is required depends on the needs of the converter. Some converters do not require any flow control whereas others require RTS flow. Consult the converter's documentation in order to determine its flow requirements. An RS485 converter that provides automatic flow control is recommended.

**Note:** When using the manufacturer's supplied communications cable, it is sometimes necessary to choose a flow control setting of **RTS** or **RTS Always** under Channel Properties.

#### Automatic Tag Database Generation

Tag Import Settings

#### **Cable Connections**

205 - 305 Controller: RS232 to RJ-11 305 Controller: RS232 to DCU RS232 405 Controller: RS232 to DCM RS232

#### Modem Setup

This driver supports modem functionality. For more information, please refer to the topic "Modem Support" in the OPC Server Help documentation.

#### **Tag Import Settings**

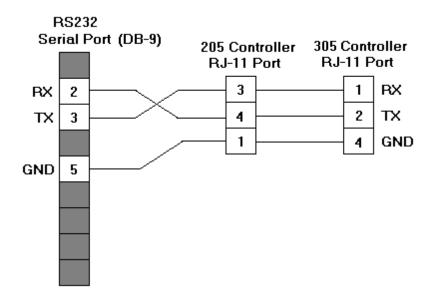
#### Tag Import File

This parameter is used to specify the exact location of the DirectSoft export file from which tags will be imported. It is this file that will be used when Automatic Tag Database Generation is instructed to create the tag database. There are two types of files that can be imported: Supported Import Files and Import Files Not Supported.

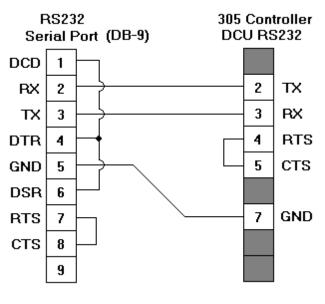
#### **Supported Import Files**

- Program (via Export), .txt extension
- Element Documentation (via Export), Standard Format, .csv extension

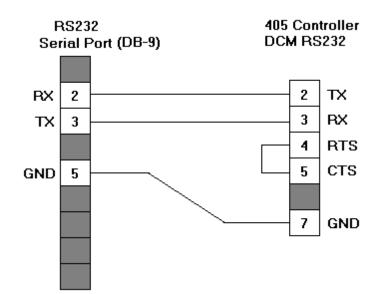
#### **Import Files Not Supported**


- Element Documentation (via Export), Standard Format, .txt extension
- Element Documentation (via Export), EZ-Touch Format, .csv and .txt extension
- Element Documentation (auto created), .esd extension
- DirectSoft Project, .prj extension

#### **Display Descriptions**


When checked, this option will import tag descriptions. If necessary, a description will be given to tags with long names that states the original tag name.

Note: For more information, refer to Automatic Tag Database Generation.


#### 205 - 305 Controller: RS232 to RJ-11



#### 305 Controller: RS232 to DCU RS232



#### 405 Controller: RS232 to DCM RS232



#### Automatic Tag Database Generation

The AutomationDirect K Sequence Driver generates its tags offline, meaning that no connection to the device is required to generate tags. Instead, the device driver imports a tag file generated from a DirectSoft export to create a tag database. This DirectSoft export file must originate from DirectSoft. For more information, refer to **Tag Import Settings** and **Importing DirectSoft Elements**.

#### See Also: Import Preparation: DirectSoft Steps and Import Preparation: OPC Server Steps.

#### Generating Tag Database While Preserving Previously Generated Tag Databases

Under certain circumstances, multiple imports into the server are required to import all tags of interest. This is the case with importing VersaPro System variables and non-System variables into the same OPC Server project. In the Database Creation dialog under Device Properties, click on the selection **Perform the following action**. The options available are "Delete on create," "Overwrite as necessary," "Do not overwrite" and "Do not overwrite, log error." After the first OPC Server import/database creation is done, check that the action is set to "Do not overwrite" or "Do not overwrite, log error" for future imports. This will import tags without deleting or overwriting tags previously imported.

#### Tag Hierarchy

All tags created using Automatic Tag Generation follow a specific hierarchy. The root level groups (or subgroup level of the group specified in the parameter "Add generated tags to the following group") are determined by the tag's memory type referenced (such as X, C and V). For example, every variable that is of address type "X" will be placed in a root level group called "X".

The only exception applies to counter and timer accumulator addresses CTA and TA respectively. In these cases, the address is converted to a V-memory reference (TA0 = V0) but the tags generated will be assigned to the root level group CTA or TA, not V. But explicit V-memory references to CTA and TA locations will be assigned to the root level group V as intended.

#### Import File-to-Server Name Conversions

#### Leading Underscores

Leading underscores (\_) in tag names will be removed. This is required since the server does not accept tag names beginning with an underscore.

#### Invalid Characters in Name

The only characters allowed in the server tag name are A-Z, a-z, 0-9, and underscore (\_). As mentioned above, a tag name cannot begin with an underscore. All other invalid characters encountered will be removed from the tag name.

#### Importing DirectSoft Elements

The device driver uses files generated from DirectSoft via the Program or Element Documentation Export feature to generate the tag database. In both methods, the items of interest are the Elements created in the DirectSoft Documentation Editor. Elements include nickname, address and description.

**Note 1:** For information on creating a DirectSoft tag import file (\*.txt or \*.csv), refer to **Import Preparation: DirectSoft Steps**.

**Note 2:** For information on configuring the OPC Server to use the import file in Automatic Tag Database Generation, refer to **Import Preparation: OPC Server Steps**.

#### Import Preparation: DirectSoft Steps

There are two supported methods for generating an export file in DirectSoft for the device driver to use as a tag import file: Program Export (\*.txt extension) and Element Documentation Export, Standard Format (\*.csv extension). For more information, refer to the instructions below.

#### **Creating Nicknames**

1. Open the DirectSoft project containing the tags (elements) that will be ported over to OPC Server.

#### 2. Click Tools | Documentation Editor.

3. Enter a nickname and description for each memory reference of interest.

| 🗊 Documenta |          |             | <u>_   ×</u>  |
|-------------|----------|-------------|---------------|
|             |          | R 🕨 🖶       |               |
| Element     | Nickname | Wiring Info | Description 🔺 |
| X27         | Alarm1   |             | Alarm 1 set   |
| X30         |          |             |               |
| X31         |          |             |               |
| X32         |          |             |               |
| X33         |          |             |               |
| X34         |          |             |               |
| X35         |          |             |               |
| X36         |          |             |               |
| X37         |          |             |               |
| X40         |          |             |               |
| X41         |          |             |               |
| X42         |          |             |               |
| X43         |          |             |               |
| X44         |          |             |               |
| X45         |          |             |               |
| X46         |          |             |               |
| X47         |          |             |               |
| X50         |          |             |               |
| X51         |          |             |               |
| X52         |          |             |               |
| X53         |          |             |               |
| ×54         |          |             |               |
| X55         |          |             |               |
| /           |          |             |               |

### **Exporting the Elements**

Program Export (.txt) 1. In DirectSoft, click File | Export. Then, select Program.

| 躍 DirectSOFT32                                                                                                                    | Progra | nming - UNTITLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>File E</u> dit <u>S</u> earch                                                                                                  | ⊻iew   | <u>Iools PLC Debug Window H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>N</u> ew Project<br>Open Project<br><u>C</u> lose Project<br>Save Project<br>Save Project <u>A</u> s<br><u>B</u> ackup Project | Ctrl+O | Kup |
| <u>R</u> ead Program<br><u>W</u> rite Program<br>Import                                                                           |        | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u>E</u> xport                                                                                                                    |        | <u>P</u> rogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Print Pre <u>v</u> iew<br><u>P</u> rint                                                                                           | Ctrl+P | Element Documentation<br><u>R</u> ung Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Print All                                                                                                                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Print Set <u>u</u> p                                                                                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Proper <u>t</u> ies                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 C:\Untitled.ori                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

2. The **Save** dialog will be invoked. The file will be displayed in text format.

| Export Progra         | am and a second s |   |   |          | ?            | × |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----------|--------------|---|
| Save jn:              | 💻 My Computer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • | £ | <b>N</b> |              |   |
| 3½ Floppy             | (A:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |          |              |   |
| 🕞 (C:)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |          |              |   |
| 🗳 (E:)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |          |              |   |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |          |              |   |
| File <u>n</u> ame:    | UNTITLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |          | <u>S</u> ave |   |
| Save as <u>t</u> ype: | Monic (*.txt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | - |          | Cancel       |   |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |          |              | ] |

Element Documentation Export (.csv) 1. In DirectSoft, click File | Export. Then, select Element Documentation.

| 🚰 DirectSOFT32                                                                                                                            | Progra | mming - UNTITLED                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|
| <u>File E</u> dit <u>S</u> earch                                                                                                          | ⊻iew   | <u>Tools</u> <u>PLC</u> <u>D</u> ebug <u>W</u> indow <u>H</u> elp                         |
| <u>N</u> ew Project<br><u>O</u> pen Project<br><u>C</u> lose Project<br>Save Project<br>Save Project <u>A</u> s<br><u>B</u> ackup Project | Ctrl+O | Kup   Y2* 1 1 1 1 1 1 1 1   Y2* 1 1 1 1 1 1 1 |
| <u>R</u> ead Program<br><u>W</u> rite Program                                                                                             |        | <b>&gt;</b>                                                                               |
| Import                                                                                                                                    |        | •                                                                                         |
| <u>E</u> xport                                                                                                                            |        | ▶ <u>P</u> rogram                                                                         |
| Print Pre <u>v</u> iew<br><u>P</u> rint                                                                                                   | Ctrl+P | <u>E</u> lement Documentation<br><u>R</u> ung Comments                                    |
| Print All                                                                                                                                 |        |                                                                                           |
| Print Set <u>u</u> p                                                                                                                      |        |                                                                                           |
| Proper <u>t</u> ies                                                                                                                       |        |                                                                                           |
| 1 C:\Untitled.ori                                                                                                                         |        |                                                                                           |

2. The Save dialog will be invoked. Select Comma Delimited (\*.csv) and Standard Format: any other format or file type will not import properly. The file will be in comma separated variable format.

| Export Documentation                                                    | <u>?×</u>                                                                                                                                               |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Save jn:<br>■ 3½ Floppy (A:)<br>■ (C:)<br>■ (D:)<br>● (E:)              | Content Format<br>Standard Format:<br>Element, Nickname,<br>Wiring Info, Description<br>EZ-Touch Format:<br>Tag Name (Nickname),<br>Value Type, Element |
| File name: UNTITLED Save   Save as type: Comma Delimited (*.csv) Cancel |                                                                                                                                                         |
| c:\untitled Help                                                        |                                                                                                                                                         |

#### **Import Preparation: OPC Server Steps**

An export file must be created from DirectSoft before the following OPC steps can be attempted. For more information, refer to **Import Preparation: DirectSoft Steps**.

1. In the device driver, click on the device of interest and invoke its Device Properties.

- 2. Select the Tag Import Settings tab.
- 3. Browse to and select the newly created DirectSoft export file. Then, click **Apply**.
- 4. Select the **Database Creation** tab and configure the settings as desired.
- 5. Select **Auto Create** to generate the tag database.

6. The OPC server will attempt to create the tag database while posting messages to the event log on the status of the import. When finished, it will state that the tag import has completed. All elements exported out of DirectSoft will appear in the OPC Server.

**Note:** The OPC tags generated are given meaningful names in the OPC Server and are based on the variables imported. These tags are also placed in meaningful tag groups to provide a structured and manageable interface to the tags. The end result is an organized OPC Server project that directly reflects the variable import file.

## Data Types Description

| Data Type | Description                                                                                                                                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boolean   | Single bit                                                                                                                                                 |
| Word      | Unsigned 16 bit value                                                                                                                                      |
|           | bit 0 is the low bit                                                                                                                                       |
|           | bit 15 is the high bit                                                                                                                                     |
| Short     | Signed 16 bit value                                                                                                                                        |
|           | bit 0 is the low bit                                                                                                                                       |
|           | bit 14 is the high bit                                                                                                                                     |
|           | bit 15 is the sign bit                                                                                                                                     |
| DWord     | Unsigned 32 bit value                                                                                                                                      |
|           | bit 0 is the low bit                                                                                                                                       |
|           | bit 31 is the high bit                                                                                                                                     |
| Long      | Signed 32 bit value                                                                                                                                        |
|           | bit 0 is the low bit                                                                                                                                       |
|           | bit 30 is the high bit                                                                                                                                     |
|           | bit 31 is the sign bit                                                                                                                                     |
| BCD       | Two byte packed BCD                                                                                                                                        |
|           | Value range is 0-9999. Behavior is undefined for values beyond this                                                                                        |
|           | range.                                                                                                                                                     |
| LBCD      | Four byte packed BCD                                                                                                                                       |
|           | Value range is 0-99999999. Behavior is undefined for values beyond this range.                                                                             |
| Float     | 32 bit floating point value.                                                                                                                               |
|           | The driver interprets two consecutive registers as a floating-point value by making the second register the high word and the first register the low word. |

#### **Address Descriptions**

Address specifications vary depending on the model in use. Select a link from the following list to obtain specific address information for the model of interest.

DL-05 DL-06 DL-105 DL-230 DL-240 DL-250(-1) DL-260 DL-350 DL-350 DL-430 DL-440 DL-450 SG Series SL Series

#### **DL-05 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type             | Discrete Range | Data Type | Word Range    | Access     |
|-------------------------|----------------|-----------|---------------|------------|
| Input Points            | X0-X377        | Boolean   | V40400-V40417 | Read/Write |
| Output Points           | Y0-Y377        | Boolean   | V40500-V40517 | Read/Write |
| Control Relays          | C0-C777        | Boolean   | V40600-V40637 | Read/Write |
| Special Relays          | SP0-SP777      | Boolean   | V41200-V41237 | Read/Write |
| Timer Status Bits       | T0-T177        | Boolean   | V41100-V41107 | Read/Write |
| Timer Current Values    | N/A            | N/A       | V0-V177       | Read/Write |
| Counter Status Bits     | CT0-CT177      | Boolean   | V41140-V41147 | Read/Write |
| Counter Current Values  | N/A            | N/A       | V1000-V1177   | Read/Write |
| Data Words              | N/A            | N/A       | V1200-V7377   | Read/Write |
| Data Words Non-Volatile | N/A            | N/A       | V7400-V7577   | Read/Write |
| Stages                  | S0-S377        | Boolean   | V41000-V41017 | Read/Write |
| System Parameters       | N/A            | N/A       | V7600-V7777   | Read/Write |

#### Address Specifications

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples | Description                                                 |
|------------------|-------------------------------------------------------------|
| CT65             | Counter contact 65.                                         |
| S57              | Stage control bit 57.                                       |
| V40500           | Output Points 0-17.*                                        |
| V1400[4] or      | Both notations define an array of four data words with base |

V1400[2][2] address V1400.

\*Octal.

#### **DL-06 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

#### Address Specifications

| Memory Type             | Discrete Range | Data Type | Word Range    | Access     |
|-------------------------|----------------|-----------|---------------|------------|
| Input Points            | X0-X777        | Boolean   | V40400-V40437 | Read/Write |
| Output Points           | Y0-Y777        | Boolean   | V40500-V40537 | Read/Write |
| Control Relays          | C0-C1777       | Boolean   | V40600-V40677 | Read/Write |
| Special Relays          | SP0-SP777      | Boolean   | V41200-V41237 | Read/Write |
| Timer Status Bits       | T0-T377        | Boolean   | V41100-V41117 | Read/Write |
| Timer Current Values    | N/A            | N/A       | V0-V377       | Read/Write |
| Counter Status Bits     | CT0-CT177      | Boolean   | V41140-V41147 | Read/Write |
| Counter Current Values  | N/A            | N/A       | V1000-V1177   | Read/Write |
| Data Words              | N/A            | N/A       | V400-V677     | Read/Write |
|                         |                |           | V1200-V7377   |            |
|                         |                |           | V10000-V17777 |            |
| Data Words Non-Volatile | N/A            | N/A       | V7400-V7577   | Read/Write |
| Stages                  | S0-S1777       | Boolean   | V41000-V41077 | Read/Write |
| Global Input            | GX0-GX3777     | Boolean   | V40000-V40177 | Read/Write |
| Global Output           | GY0-GY3777     | Boolean   | V40200-V40377 | Read/Write |
| System Parameters       | N/A            | N/A       | V700-V777     | Read/Write |
|                         |                |           | V7600-V7777   |            |
|                         |                |           | V36000-V37777 |            |

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-105 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V2000 is declared as type DWord, both addresses V2000 and V2001 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type             | Discrete Range | Data Type | Word Range    | Access     |
|-------------------------|----------------|-----------|---------------|------------|
| Input Points            | X0-X177        | Boolean   | V40400-V40407 | Read/Write |
| Output Points           | Y0-Y177        | Boolean   | V40500-V40507 | Read/Write |
| Control Relays          | C0-C377        | Boolean   | V40600-V40617 | Read/Write |
| Special Relays          | SP0-SP117      | Boolean   | V41200-V41204 | Read/Write |
|                         | SP540-SP577    |           | V41226-V41227 |            |
| Timer Status Bits       | T0-T77         | Boolean   | V41100-V41103 | Read/Write |
| Timer Current Values    | N/A            | N/A       | V0-V77        | Read/Write |
| Counter Status Bits     | CT0-CT77       | Boolean   | V41140-V41143 | Read/Write |
| Counter Current Values  | N/A            | N/A       | V1000-V1077   | Read/Write |
| Data Words              | N/A            | N/A       | V2000-V2377   | Read/Write |
| Data Words Non-Volatile | N/A            | N/A       | V4000-V4177   | Read/Write |
| Stages                  | S0-S377        | Boolean   | V41000-V41017 | Read/Write |
| System Parameters       | N/A            | N/A       | V7620-V7647   | Read/Write |
|                         |                |           | V7750-V7777   |            |

#### Address Specifications

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-230 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V2000 is declared as type DWord, both addresses V2000 and V2001 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

#### Address Specifications

| Memory Type             | Discrete Range | Data Type | Word Range    | Access     |
|-------------------------|----------------|-----------|---------------|------------|
| Input Points            | X0-X177        | Boolean   | V40400-V40407 | Read/Write |
| Output Points           | Y0-Y177        | Boolean   | V40500-V40507 | Read/Write |
| Control Relays          | C0-C377        | Boolean   | V40600-V40617 | Read/Write |
| Special Relays          | SP0-SP117      | Boolean   | V41200-V41204 | Read/Write |
|                         | SP540-SP577    |           | V41226-V41227 |            |
| Timer Status Bits       | T0-T77         | Boolean   | V41100-V41103 | Read/Write |
| Timer Current Values    | N/A            | N/A       | V0-V77        | Read/Write |
| Counter Status Bits     | CT0-CT77       | Boolean   | V41140-V41143 | Read/Write |
| Counter Current Values  | N/A            | N/A       | V1000-V1077   | Read/Write |
| Data Words              | N/A            | N/A       | V2000-V2377   | Read/Write |
| Data Words Non-Volatile | N/A            | N/A       | V4000-V4177   | Read/Write |
| Stages                  | S0-S377        | Boolean   | V41000-V41017 | Read/Write |
| System Parameters       | N/A            | N/A       | V7620-V7647   | Read/Write |
|                         |                |           | V7750-V7777   |            |

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-240 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V2000 is declared as type DWord, both addresses V2000 and V2001 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

#### Address Specifications

|  | Memory Type | Discrete Range | Data Type | Word Range | Access |
|--|-------------|----------------|-----------|------------|--------|
|--|-------------|----------------|-----------|------------|--------|

#### AutomationDirect K Sequence Driver Help

| Input Points            | X0-X477     | Boolean | V40400-V40423 | Read/Write |
|-------------------------|-------------|---------|---------------|------------|
| Output Points           | Y0-Y477     | Boolean | V40500-V40523 | Read/Write |
| Control Relays          | C0-C377     | Boolean | V40600-V40617 | Read/Write |
| Special Relays          | SP0-SP137   | Boolean | V41200-V41205 | Read/Write |
|                         | SP540-SP617 |         | V41226-V41230 |            |
| Timer Status Bits       | T0-T177     | Boolean | V41100-V41107 | Read/Write |
| Timer Current Values    | N/A         | N/A     | V0-V177       | Read/Write |
| Counter Status Bits     | CT0-CT177   | Boolean | V41140-V41147 | Read/Write |
| Counter Current Values  | N/A         | N/A     | V1000-V1177   | Read/Write |
| Data Words              | N/A         | N/A     | V2000-V3777   | Read/Write |
| Data Words Non-Volatile | N/A         | N/A     | V4000-V4377   | Read/Write |
| Stages                  | S0-S777     | Boolean | V41000-V41037 | Read/Write |
| System Parameters       | N/A         | N/A     | V7620-V7737   | Read/Write |
|                         |             |         | V7746-V7777   |            |

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### DL-250(-1) Addressing

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type            | Discrete Range | Data Type | Word Range    | Access     |
|------------------------|----------------|-----------|---------------|------------|
| Input Points           | X0-X777        | Boolean   | V40400-V40437 | Read/Write |
| Output Points          | Y0-Y777        | Boolean   | V40500-V40537 | Read/Write |
| Control Relays         | C0-C1777       | Boolean   | V40600-V40677 | Read/Write |
| Special Relays         | SP0-SP777      | Boolean   | V41200-V41237 | Read/Write |
| Timer Status Bits      | T0-T377        | Boolean   | V41100-V41117 | Read/Write |
| Timer Current Values   | N/A            | N/A       | V0-V377       | Read/Write |
| Counter Status Bits    | CT0-CT177      | Boolean   | V41140-V41147 | Read/Write |
| Counter Current Values | N/A            | N/A       | V1000-V1177   | Read/Write |
| Data Words             | N/A            | N/A       | V1400-V7377   | Read/Write |

#### Address Specifications

|                   |          |         | V10000-V17777 |            |
|-------------------|----------|---------|---------------|------------|
| Stages            | S0-S1777 | Boolean | V41000-V41077 | Read/Write |
| System Parameters | N/A      | N/A     | V7400-V7777   | Read/Write |
|                   |          |         |               |            |
|                   |          |         | V37000-V37777 |            |

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples            | Description                                                                |
|-----------------------------|----------------------------------------------------------------------------|
| CT65>                       | Counter contact 65.                                                        |
| S57>                        | Stage control bit 57.                                                      |
| V40500>                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2]> | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-260 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

**Note:** All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type            | Discrete Range | Data Type | Word Range                                | Access     |
|------------------------|----------------|-----------|-------------------------------------------|------------|
| Input Points           | X0-X1777       | Boolean   | V40400-V40477                             | Read/Write |
| Output Points          | Y0-Y1777       | Boolean   | V40500-V40577                             | Read/Write |
| Control Relays         | C0-C3777       | Boolean   | V40600-V40777                             | Read/Write |
| Special Relays         | SP0-SP777      | Boolean   | V41200-V41237                             | Read/Write |
| Timer Status Bits      | T0-T377        | Boolean   | V41100-V41117                             | Read/Write |
| Timer Current Values   | N/A            | N/A       | V0-V377                                   | Read/Write |
| Counter Status Bits    | CT0-CT377      | Boolean   | V41140-V41157                             | Read/Write |
| Counter Current Values | N/A            | N/A       | V1000-V1377                               | Read/Write |
| Data Words             | N/A            | N/A       | V400-V777<br>V1400-V7377<br>V10000-V35777 | Read/Write |
| Stages                 | S0-S1777       | Boolean   | V41000-V41077                             | Read/Write |
| Global Input           | GX0-GX3777     | Boolean   | V40000-V40177                             | Read/Write |
| Global Output          | GY0-GY3777     | Boolean   | V40200-V40377                             | Read/Write |
| System Parameters      | N/A            | N/A       | V7600-V7777<br>V36000-V37777              | Read/Write |

#### Address Specifications

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-350 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type            | Discrete Range | Data Type | Word Range    | Access     |
|------------------------|----------------|-----------|---------------|------------|
| Input Points           | X0-X777        | Boolean   | V40400-V40437 | Read/Write |
| Output Points          | Y0-Y777        | Boolean   | V40500-V40537 | Read/Write |
| Control Relays         | C0-C1777       | Boolean   | V40600-V40677 | Read/Write |
| Special Relays         | SP0-SP777      | Boolean   | V41200-V41237 | Read/Write |
| Timer Status Bits      | T0-T377        | Boolean   | V41100-V41117 | Read/Write |
| Timer Current Values   | N/A            | N/A       | V0-V377       | Read/Write |
| Counter Status Bits    | CT0-CT177      | Boolean   | V41140-V41147 | Read/Write |
| Counter Current Values | N/A            | N/A       | V1000-V1177   | Read/Write |
| Data Words             | N/A            | N/A       | V1400-V7377   | Read/Write |
|                        |                |           | V10000-V17777 |            |
| Stages                 | S0-S1777       | Boolean   | V41000-V41077 | Read/Write |
| System Parameters      | N/A            | N/A       | V7400-V7777   | Read/Write |
|                        |                |           | V36000-V37777 |            |

#### Address Specifications

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-430 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

**Note:** All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type            | Discrete Range | Data Type | Word Range    | Access     |
|------------------------|----------------|-----------|---------------|------------|
| Input Points           | X0-X477        | Boolean   | V40400-V40423 | Read/Write |
| Output Points          | Y0-Y477        | Boolean   | V40500-V40523 | Read/Write |
| Control Relays         | C0-C737        | Boolean   | V40600-V40635 | Read/Write |
| Special Relays         | SPO-SP137      | Boolean   | V41200-V41205 | Read/Write |
|                        | SP320-SP617    |           | V41215-V41230 |            |
| Timer Status Bits      | T0-T177        | Boolean   | V41100-V41107 | Read/Write |
| Timer Current Values   | N/A            | N/A       | V0-V177       | Read/Write |
| Counter Status Bits    | CT0-CT177      | Boolean   | V41140-V41147 | Read/Write |
| Counter Current Values | N/A            | N/A       | V01000-V01177 | Read/Write |
| Data Words             | N/A            | N/A       | V1400-V7377   | Read/Write |
| Stages                 | S0-S577        | Boolean   | V41000-V41027 | Read/Write |
| Remote In/Out          | GX0-GX737      | Boolean   | V40000-V40037 | Read/Write |
| System Parameters      | N/A            | N/A       | V7400-V7777   | Read/Write |

#### Address Specifications

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-440 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type            | Discrete Range           | Data Type | Word Range                     | Access     |
|------------------------|--------------------------|-----------|--------------------------------|------------|
| Input Points           | X0-X477                  | Boolean   | V40400-V40423                  | Read/Write |
| Output Points          | Y0-Y477                  | Boolean   | V40500-V40523                  | Read/Write |
| Control Relays         | C0-C1777                 | Boolean   | V40600-V40677                  | Read/Write |
| Special Relays         | SP0-SP137<br>SP320-SP717 | Boolean   | V41200-V41205<br>V41215-V41234 | Read/Write |
| Timer Status Bits      | T0-T377                  | Boolean   | V41100-V41117                  | Read/Write |
| Timer Current Values   | N/A                      | N/A       | V0-V377                        | Read/Write |
| Counter Status Bits    | CT0-CT177                | Boolean   | V41140-V41147                  | Read/Write |
| Counter Current Values | N/A                      | N/A       | V1000-V1177                    | Read/Write |
| Data Words             | N/A                      | N/A       | V1400-V7377<br>V10000-V17777   | Read/Write |
| Stages                 | S0-S1777                 | Boolean   | V41000-V41077                  | Read/Write |
| Remote In/Out          | GX0-GX1777               | Boolean   | V40000-V40077                  | Read/Write |
| System Parameters      | N/A                      | N/A       | V700-V737<br>V7400-V7777       | Read/Write |

#### **Address Specifications**

**Note:** For the BCD data type only, the syntax Vaddress:B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### **DL-450 Addressing**

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

#### **Address Specifications**

|  | ſ | Memory Type | Discrete Range | Data Type | Word Range | Access |
|--|---|-------------|----------------|-----------|------------|--------|
|--|---|-------------|----------------|-----------|------------|--------|

| Input Points           | X0-X1777   | Boolean | V40400-V40477                | Read/Write |
|------------------------|------------|---------|------------------------------|------------|
| Output Points          | Y0-Y1777   | Boolean | V40500-V40577                | Read/Write |
| Control Relays         | C0-C3777   | Boolean | V40600-V40777                | Read/Write |
| Special Relays         | SP0-SP777  | Boolean | V41200-V41237                | Read/Write |
| Timer Status Bits      | T0-T377    | Boolean | V41100-V41117                | Read/Write |
| Timer Current Values   | N/A        | N/A     | V0-V377                      | Read/Write |
| Counter Status Bits    | CT0-CT377  | Boolean | V41140-V41157                | Read/Write |
| Counter Current Values | N/A        | N/A     | V1000-V1377                  | Read/Write |
| Data Words             | N/A        | N/A     | V1400-V7377<br>V10000-V37777 | Read/Write |
| Stages                 | S0-S1777   | Boolean | V41000-V41077                | Read/Write |
| Global Input           | GX0-GX3777 | Boolean | V40000-V40177                | Read/Write |
| Global Output          | GY0-GY3777 | Boolean | V40200-V40377                | Read/Write |
| System Parameters      | N/A        | N/A     | V400-V777<br>V7400-V7777     | Read/Write |

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### SG Series Addressing

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type            | Discrete Range | Data Type | Word Range    | Access     |
|------------------------|----------------|-----------|---------------|------------|
| Input Points           | X0-X1777       | Boolean   | V40400-V40477 | Read/Write |
| Output Points          | Y0-Y1777       | Boolean   | V40500-V40577 | Read/Write |
| Control Relays         | C0-C3777       | Boolean   | V40600-V40777 | Read/Write |
| Special Relays         | SP0-SP777      | Boolean   | V41200-V41237 | Read/Write |
| Timer Status Bits      | Т0-Т377        | Boolean   | V41100-V41117 | Read/Write |
| Timer Current Values   | N/A            | N/A       | V0-V377       | Read/Write |
| Counter Status Bits    | CT0-CT377      | Boolean   | V41140-V41157 | Read/Write |
| Counter Current Values | N/A            | N/A       | V1000-V1377   | Read/Write |
| Data Words             | N/A            | N/A       | V1400-V7377   | Read/Write |

#### Address Specifications

|                   |            |         | V10000-V37777 |            |
|-------------------|------------|---------|---------------|------------|
| Stages            | S0-S1777   | Boolean | V41000-V41077 | Read/Write |
| Remote In         | GX0-GX3777 | Boolean | V40000-V40177 | Read/Write |
| Remote Out        | GY0-GY3777 | Boolean | V40200-V0377  | Read/Write |
| System Parameters | N/A        | N/A     | V400-V777     | Read/Write |
|                   |            |         | V7400-V7777   |            |

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

| Address Examples           | Description                                                                |
|----------------------------|----------------------------------------------------------------------------|
| CT65                       | Counter contact 65.                                                        |
| S57                        | Stage control bit 57.                                                      |
| V40500                     | Output Points 0-17.*                                                       |
| V1400[4] or<br>V1400[2][2] | Both notations define an array of four data words with base address V1400. |

\*Octal.

#### SL Series Addressing

Word memory references can be declared with the following data types: Short, Word, Long, DWord, Float, BCD and LBCD. The default data type for dynamically defined DDE memory reference tags is Word. When using 32 bit data types (such as Long, DWord, Float and LBCD) two consecutive 16-bit registers will be used. This means that if address V1400 is declared as type DWord, both addresses V1400 and V1401 will be used to store the 32-bit value. For more information, refer to **Data Types Description**.

This driver supports array notation for V memory addresses defined using the Short and Word data types. To specify an array, append the array size to the address specification as follows: address[array size] or address[rows][cols]. Array size is limited to 64 elements.

Note: All address ranges are specified in octal.

#### **Bit Access to V Memory**

Bit information can be directly accessed within V memory registers. To access a bit within a V memory register, a bit number can be appended to any V memory address. V memory addressing with bit access would appear as follows: V<xxxx>.<yy> where xxxxx is the V memory register location and yy is the bit number (0 to 15) within that register. For example, address V00000.02 or V00000.2 must be used to access bit 2 of the register V00000.

| Memory Type            | Discrete Range | Data Type | Word Range    | Access     |
|------------------------|----------------|-----------|---------------|------------|
| Input Points           | X0-X577        | Boolean   | V40400-V40427 | Read/Write |
| Output Points          | Y0-Y577        | Boolean   | V40500-V40527 | Read/Write |
| Control Relays         | C0-C737        | Boolean   | V40600-V40635 | Read/Write |
| Special Relays         | SP0-SP137      | Boolean   | V41200-V41205 | Read/Write |
|                        | SP320-SP617    |           | V41215-V41230 |            |
| Timer Status Bits      | T0-T177        | Boolean   | V41100-V41107 | Read/Write |
| Timer Current Values   | N/A            | N/A       | V0-V177       | Read/Write |
| Counter Status Bits    | CT0-CT177      | Boolean   | V41140-V41147 | Read/Write |
| Counter Current Values | N/A            | N/A       | V1000-V1177   | Read/Write |
| Data Words             | N/A            | N/A       | V1400-V7377   | Read/Write |
| Stages                 | S0-S577        | Boolean   | V41000-V41027 | Read/Write |
| Remote In/Out          | GX0-GX777      | Boolean   | V40000V40037  | Read/Write |
| System Parameters      | N/A            | N/A       | V7400-V7777   | Read/Write |

#### Address Specifications

**Note:** For the BCD data type only, the syntax Vaddress: B for V memory registers is allowed. For example, V0000:B.

\*Octal.

#### **Error Descriptions**

The following error/warning messages may be generated. Click on the link for a description of the message.

#### Address Validation

Missing address Device address '<address>' contains a syntax error Address '<address>' is out of range for the specified device or register Device address '<address>' is not supported by model '<model name>' Data Type '<type>' is not valid for device address '<address>' Device address '<address>' is Read Only

#### Serial Communications

COMn does not exist Error opening COMn COMn is in use by another application Unable to set comm parameters on COMn Communications error on '<channel name>' [<error mask>]

#### **Device Status Messages**

Device '<device name>' is not responding Unable to write to '<address>' on device '<device name>'

#### Device Specific Messages

Bad address in block [<start address> to <end address>] on device '<device name>'

#### Automatic Tag Database Generation Messages

Unable to generate a tag database for device <device name>. Reason: Low memory resources Unable to generate a tag database for device <device name>. Reason: Import file is invalid or corrupt

#### Address Validation

The following error/warning messages may be generated. Click on the link for a description of the message.

#### Address Validation

Missing address Device address '<address>' contains a syntax error Address '<address>' is out of range for the specified device or register Device address '<address>' is not supported by model '<model name>' Data Type '<type>' is not valid for device address '<address>' Device address '<address>' is Read Only

#### Missing address

#### Error Type:

Warning

#### Possible Cause:

A tag address that has been specified statically has no length.

#### Solution:

Re-enter the address in the client application.

#### Device address '<address>' contains a syntax error

#### Error Type: Warning

#### Possible Cause:

A tag address that has been specified statically contains one or more invalid characters.

#### Solution:

Re-enter the address in the client application.

### Address '<address>' is out of range for the specified device or register

#### Error Type:

Warning

#### **Possible Cause:**

A tag address that has been specified statically references a location that is beyond the range of supported locations for the device.

#### Solution:

Verify the address is correct; if it is not, re-enter it in the client application.

#### Device address '<address>' is not supported by model '<model name>'

#### Error Type:

Warning

#### **Possible Cause:**

A tag address that has been specified statically references a location that is valid for the communications protocol but not supported by the target device.

#### Solution:

Verify the address is correct; if it is not, re-enter it in the client application. Also verify the selected model name for the device is correct.

#### Data Type '<type>' is not valid for device address '<address>'

### Error Type:

Warning

#### Possible Cause:

A tag address that has been specified statically has been assigned an invalid data type.

#### Solution:

Modify the requested data type in the client application.

#### Device address '<address>' is Read Only

#### Error Type:

Warning

#### **Possible Cause:**

A tag address that has been specified statically has a requested access mode that is not compatible with what the device supports for that address.

#### Solution:

Change the access mode in the client application.

#### **Serial Communications**

The following error/warning messages may be generated. Click on the link for a description of the message.

#### Serial Communications

COMn does not exist Error opening COMn COMn is in use by another application Unable to set comm parameters on COMn Communications error on '<channel name>' [<error mask>]

#### COMn does not exist

Error Type: Fatal

#### Possible Cause:

The specified COM port is not present on the target computer.

#### Solution:

Verify that the proper COM port has been selected.

#### Error opening COMn

#### Error Type:

Fatal

#### Possible Cause:

The specified COM port could not be opened due an internal hardware or software problem on the target computer.

#### Solution:

Verify that the COM port is functional and may be accessed by other Windows applications.

#### COMn is in use by another application

### Error Type:

Fatal

#### Possible Cause:

The serial port assigned to a device is being used by another application.

#### Solution:

Verify that the correct port has been assigned to the channel.

#### Unable to set comm parameters on COMn

#### Error Type: Fatal

#### **Possible Cause:**

The serial parameters for the specified COM port are not valid.

#### Solution:

Verify the serial parameters and make any necessary changes.

#### Communications error on '<channel name>' [<error mask>]

#### Error Type:

Serious

#### Error Mask Definitions:

- **B** = Hardware break detected.
- **F** = Framing error.
- $\mathbf{E} = I/O \text{ error}.$
- **O** = Character buffer overrun.
- $\mathbf{R} = \mathsf{RX}$  buffer overrun.
- **P** = Received byte parity error.
- $\mathbf{T} = \mathsf{TX}$  buffer full.

#### **Possible Cause:**

- 1. The serial connection between the device and the Host PC is bad.
- 2. The communications parameters for the serial connection are incorrect.

#### Solution:

- 1. Verify the cabling between the PC and the device.
- 2. Verify that the specified communications parameters match those of the device.

#### **Device Status Messages**

The following error/warning messages may be generated. Click on the link for a description of the message.

#### **Device Status Messages**

Device '<device name>' is not responding Unable to write to '<address>' on device '<device name>'

#### Device '<device name>' is not responding

#### Error Type:

Serious

#### **Possible Cause:**

- 1. The serial connection between the device and the Host PC is broken.
- 2. The communications parameters for the serial connection are incorrect.
- 3. The named device may have been assigned an incorrect Network ID.

#### Solution:

- 1. Verify the cabling between the PC and the device.
- 2. Verify the specified communications parameters match those of the device.
- 3. Verify that the Network ID given to the named device matches that of the actual device.

#### Unable to write to '<address>' on device '<device name>'

#### Error Type:

Serious

#### **Possible Cause:**

- 1. The serial connection between the device and the Host PC is broken.
- 2. The communications parameters for the serial connection are incorrect.
- 3. The named device may have been assigned an incorrect Network ID.

#### Solution:

- 1. Verify the cabling between the PC and the device.
- 2. Verify the specified communications parameters match those of the device.
- 3. Verify that the Network ID given to the named device matches that of the actual device.

#### **Device Specific Messages**

The following error/warning messages may be generated. Click on the link for a description of the message.

#### **Device Specific Messages**

Bad address in block [<start address> to <end address>] on device '<device name>'

## Bad address in block [<start address> to <end address>] on device '<device name>'

**Error Type:** 

Serious

#### **Possible Cause:**

An attempt has been made to reference a nonexistent location in the specified device.

#### Solution:

Verify that the tags assigned to addresses in the specified range on the device and eliminate ones that reference invalid locations.

#### Automatic Tag Database Generation Messages

The following error/warning messages may be generated. Click on the link for a description of the message.

#### Automatic Tag Database Generation Messages

Unable to generate a tag database for device <device name>. Reason: Low memory resources Unable to generate a tag database for device <device name>. Reason: Import file is invalid or corrupt

# Unable to generate a tag database for device <device name>. Reason: Low memory resources

## Error Type:

Warning

#### **Possible Cause:**

Memory required for database generation could not be allocated. The process is aborted.

#### Solution:

Close any unused applications and/or increase the amount of virtual memory. Then, try again.

## Unable to generate a tag database for device <device name>. Reason: Import file is invalid or corrupt

#### **Error Type:**

Warning

#### **Possible Cause:**

The file specified as the Tag Import File in the Database Settings tab in Device Properties is an improperly formatted txt or csv file.

#### Solution:

If importing Element Documentation, verify that the export file was saved in "Standard Format" with a .csv extension. If problem resumes, try re-exporting the file.

#### See Also:

Importing DirectSoft Elements

## Index

| 205 - 205 Operative Ham                                                                                            | ~  |
|--------------------------------------------------------------------------------------------------------------------|----|
| 205 - 305 Controller                                                                                               |    |
| 205 - 305 Controller: RS232 to RJ-11                                                                               |    |
| 230                                                                                                                |    |
| 240                                                                                                                | 16 |
| 3                                                                                                                  |    |
| 305 Controller                                                                                                     | 6  |
| 305 Controller: RS232 to DCU RS232                                                                                 | 6  |
| 4                                                                                                                  |    |
| 405 Controller                                                                                                     | 6  |
| 405 Controller: RS232 to DCM RS232                                                                                 | 6  |
| 430                                                                                                                | 20 |
| 440                                                                                                                | 20 |
| 450                                                                                                                | 21 |
| Α                                                                                                                  |    |
| Address ' <address>' is out of range for the specified device or register</address>                                | 26 |
| Address Descriptions                                                                                               | 13 |
| Address Validation                                                                                                 | 25 |
| Automatic Tag Database Generation                                                                                  | 28 |
| В                                                                                                                  |    |
| Bad address in block [ <start address=""> to <end address="">] on device '<device name="">'</device></end></start> | 28 |
| BCD                                                                                                                | 12 |
| Boolean                                                                                                            | 12 |
| C                                                                                                                  |    |
| Communications error on ' <channel name="">' [<error mask="">]</error></channel>                                   | 27 |
| COMn does not exist                                                                                                | 26 |
| COMn is in use by another application                                                                              | 27 |
| D                                                                                                                  |    |
| D1-105 Addressing                                                                                                  | 15 |
| D2-250 Addressing                                                                                                  |    |
| Data Type ' <type>' is not valid for device address '<address>'</address></type>                                   |    |
| Data Types Description                                                                                             |    |
| Device ' <device name="">' is not responding</device>                                                              |    |
| Device address ' <address>' contains a syntax error</address>                                                      |    |

| Device address ' <address>' is not supported by model '<model name="">'</model></address> |    |
|-------------------------------------------------------------------------------------------|----|
| Device address ' <address>' is Read Only</address>                                        | 26 |
| Device ID                                                                                 | 5  |
| Device Setup                                                                              | 5  |
| Device Specific Messages                                                                  | 28 |
| Device Status Messages                                                                    |    |
| DL-05 Addressing                                                                          | 13 |
| DL-06 Addressing                                                                          | 14 |
| DL-260 Addressing                                                                         | 18 |
| DL-350 Addressing                                                                         | 19 |
| DWord                                                                                     | 12 |
| E                                                                                         |    |
| Element Documentation                                                                     | 5  |

| Element Documentation | Э  |
|-----------------------|----|
| Error Descriptions    | 25 |
| Error opening COMn    | 27 |
|                       |    |

## F

| Float   | 12 |
|---------|----|
| framing | 27 |
| -       |    |

### I

| Import File-To-Server Name Conversions | 8  |
|----------------------------------------|----|
| Import Preparation: OPC Server Steps   | 11 |
| Import Preparation:DirectSoft Steps    | 8  |
| Importing DirectSoft Elements          | 8  |

### L

| LBCD                 | 12 |
|----------------------|----|
| Long                 | 12 |
| Low memory resources |    |
| N/                   |    |

### Μ

| mask            |   |
|-----------------|---|
| Missing address |   |
| Modem Setup     |   |
| Ν               |   |
| Network         | 5 |
| 0               |   |
| overrun         |   |

| Overview                                                                                                | 4   |
|---------------------------------------------------------------------------------------------------------|-----|
| P                                                                                                       |     |
| parity                                                                                                  | 27  |
| S                                                                                                       |     |
| Serial Communications                                                                                   | 26  |
| SG Series Addressing                                                                                    | 22  |
| Short                                                                                                   | 12  |
| SL Series Addressing                                                                                    | 23  |
| т                                                                                                       |     |
| Tag Hierarchy                                                                                           | 8   |
| Tag Import Settings                                                                                     | . 5 |
| U                                                                                                       |     |
| Unable to generate a tag database for device <device name="">. Reason: Import file is invalid.</device> | 29  |
| Unable to set comm parameters on COMn                                                                   | 27  |
| Unable to write tag ' <address>' on device '<device name="">'</device></address>                        | 28  |
| W                                                                                                       |     |
| Word                                                                                                    | 12  |