
Custom Interface Driver Help

© 2015 Kepware Technologies

Custom Interface Driver Help

Table of Contents
Table of Contents 2

Custom Interface Driver Help 3
Overview 3

Channel Setup 4
Channel Configuration 4
Support Information 5

Device Setup 7
Device Configuration 7
Settings 7

Data Types Description 9
Address Descriptions 10
Automatic Device/Tag Generation 11
Error Descriptions 12

Cannot open shared memory file associated with configuration <configuration name>. Please verify
CIDA is running with proper permissions and configuration name is correct. 12
Unable to read to register <register offset> on device <device name>. Register corrupted. 12
Unable to read from register <register offset> on device <device name>. Register is not configured
for read access. 13
Unable to read from register <register offset> on device <device name>. CIDA <CIDA name>
returned error code <error code>. 13
Unable to read from register <register offset> on device <device name>. Register value type is not
configured for read data. 13
Unable to write to register <register offset> on device <device name>. Register is not configured for
write access. 14
Unable to write to register <register offset> on device <device name>. Register value type is not
configured for write data. 14
Unable to write to register <register offset> on device <device name>. CIDA <CIDA name> returned
error code <error code>. 14
Unable to write to register <register offset> on device <device name>. Register corrupted. 15

Developer Information 16
CIDA Overview 16
CIDA Requirements 16

Shared Memory Interface 18
REGISTER Structure 18
DATA Structure 19
VALUE Structure 19
STRINGARRAY Structure 20

Reference Implementation 21
Reference Implementation Architecture 22
CID/CIDA Reference Implementation Demonstration 23

Channel Diagnostics 26
Channel Diagnostics 30

Index 35

www. kepware.com

2

Custom Interface Driver Help

Custom Interface Driver Help
Help version 1.025

CONTENTS

Overview
What is the Custom Interface Driver?

Channel Setup
How do I configure custom channel properties for this driver?

Device Setup
How do I configure a device for use with this driver?

Data Types Description
What data types does this driver support?

Address Description
How do I address a data location on a Custom Interface Driver device?

Automatic Device/Tag Generation
How can I easily configure tags for the Custom Interface Driver?

Error Descriptions
What error messages does the Custom Interface Driver produce?

Developer Information
As a developer, where can I find supplemental in-depth information and examples of implementation?

Overview
The Custom Interface Driver (CID) provides OPC and native connectivity for third-party custom driver data
without using a toolkit. The custom drivers are called Custom Interface Driver Applications (CIDA) and they
interface with the CID through the inter-process communication method called Shared Memory. The CIDA is
responsible for creating the shared memory file in addition to an XML configuration file that fully defines the data
mapped in shared memory. The configuration file will then be imported into the CID for automatic device/tag
generation within the OPC server.

Communication via shared memory is achieved through standardized structures mapped onto shared memory.
For more information on CID and CIDA data flow, refer to CIDA Overview.

Note: This help file is meant to supplement the help file provided with the CID Application. For more information
on the Reference Implementation provided with the driver, refer to Reference Implementation.

www. kepware.com

3

Custom Interface Driver Help

Channel Setup
A channel represents a single CID Application Configuration. Each CID Application must provide a configuration
file that specifies the configuration name used to associate with a shared memory file (in addition to a list of the
configuration's corresponding devices and tags). The CID can support multiple configurations simultaneously;
however, each configuration must contain a unique configuration name. For more information, refer to Channel
Configuration.

Channel Configuration
The Configuration dialog is used to specify the location and behavior of the configuration file, as well as any
Advanced settings.

Configuration File
The configuration file is an XML file that contains the shared memory file's name, size, associated devices, and
appropriate tag definitions. This parameter is used to specify its location. To access theOpen File dialog, click
the browse button and then set the filter to "*.xml." Select the desired file and then clickOpen. The
configuration name within the file must be unique so that one channel does not interfere with another channel's
access to a register. Once set, the file will be checked for uniqueness.

Caution: Users must regenerate the configuration file every time a change is made to it. For more information,
refer to "Regenerate" below.

Important:When running in System Service Mode, the configuration file must be located in an accessible folder
in order to be loaded by the Runtime. For example, a file residing in a network drive that requires authentication
will cause the loading to fail. For more information on System Service Mode, refer to the server help file.

Regenerate
The Regenerate button is used to manually start automatic device/tag generation. The button appears as shown
below. For more information, refer to Automatic Device/Tag Generation.

Advanced
The Advanced settings should only be used by CID Application Developers. Descriptions of the parameters are as
follows:

www. kepware.com

4

Custom Interface Driver Help

l Override Configuration File:When checked, this option overrides the configuration name and shared
memory size as defined by the configuration file. In the absence of a configuration file, the associated
parameters may be used to manually define the configuration name and shared memory size. The default
setting is unchecked.

l Configuration Name: This parameter contains the configuration name that the channel will use when
accessing shared memory. It must be unique across channels so that one channel will not interfere with
another channel's access to a register. The driver will check for uniqueness automatically, and warn the
user/override when necessary. The default setting is "cidarefimplcpp".

l Shared Memory Size ___ Bytes: This parameter contains the shared memory size that the channel
will use during tag address validation. When the Override Configuration File setting is unchecked, this
property will hold the value last imported during automatic device/tag generation despite being disabled.
When the Override Configuration File setting is checked, this property will be enabled and capable of
modification. The range is 0 to 2,147,483,648. The default setting is 0.

Note: If the Override Configuration File parameter is unchecked after either the configuration name or shared
memory size settings have been changed, the settings will return to their default settings. The default settings
are the values last loaded from the configuration file.

Support Information
The following dialog contains support information. The information may vary depending on what the supporting
party has decided to include.

Descriptions of the parameters are as follows:

1. Technical Support Contact Information: This text includes the supporting party's company name,
phone, email address, web address, and any additional information.

2. To Launch the Configuration: This text includes brief instructions on how to start the supporting
party's Configuration component.

3. To Launch the Runtime: This text includes brief instructions on how to start the supporting party's
Runtime component.

4. To Launch the Help: This text includes brief instructions on how to access the supporting party's help

www. kepware.com

5

Custom Interface Driver Help

documentation.

5. Additional: This text includes optional miscellaneous information.

www. kepware.com

6

Custom Interface Driver Help

Device Setup
A device is a logical collection of tags that corresponds to the physical device/data provider being polled by the
CID Application.

Device Configuration
Advanced
The Advanced settings should only be used by CID Application Developers.

Descriptions of the parameters are as follows:

l Override Configuration File: When checked, this option overrides the shared memory device offset
and device identifier as defined by the configuration file. In the absence of a configuration file, the
associated parameters may be used to manually define the shared memory device offset and device
identifier. The default setting is unchecked.

l Shared Memory Device Offset: This parameter is used to define the starting byte offset into the
shared memory map for the given device. All register offsets (such as tag addresses) are relative to the
shared memory device offset. If the configuration is designed so that all devices are assigned a shared
memory device offset of 0, then all register offsets must be unique. This is because the register offsets
are relative to the beginning of the file. If all devices are assigned a non-zero shared memory device
offset, then there may be multiple tags with the same offset as these register offsets are relative to the
beginning of the device under the channel. Setting this property incorrectly poses a safety hazard,
because overlapping registers may result in timeouts or corrupt data.

Note:When the Override Configuration File setting is unchecked, this property will hold the value last
imported during automatic device/tag generation despite being disabled. When the Override
Configuration File setting is checked, this property will be enabled and capable of modification. The range
is 0 to 2147483647. The default setting is 0.

l Device Identifier: The device identifier is an optional label used to identify the device. It is useful in
associating the device with a physical device/data provider and may contain up to 256 characters. The
default setting is 1.

Note: If the Override Configuration File parameter is unchecked after either the shared memory device offset or
the device identifier settings have been changed, the settings will return to their default settings. The default
settings are the values last loaded from the configuration file.

Settings
Timing

www. kepware.com

7

Custom Interface Driver Help

Description of the parameter is as follows:

l Scan Rate Floor: This parameter specifies the device's minimum scan rate. Any client scan rate that is
faster than the device's scan rate floor setting will be capped at the device's setting. The minimum value
is 250 milliseconds. The maximum value is 60000 milliseconds. The default setting is 250 milliseconds.

www. kepware.com

8

Custom Interface Driver Help

Data Types Description

Data Type Description
Boolean Single bit
Char Signed 8 bit value

bit 0 is the low bit
bit 6 is the high bit
bit 7 is the sign bit

Byte Unsigned 8 bit value

bit 0 is the low bit
bit 7 is the high bit

Short Signed 16 bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

Word Unsigned 16 bit value

bit 0 is the low bit
bit 15 is the high bit

DWord Unsigned 32 bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32 bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD Value range is 0-9999.

Behavior is undefined for values beyond this range.
LBCD Four byte packed BCD Value range is 0-99999999.

Behavior is undefined for values beyond this range.
Float 32 bit floating point value

bit 0 is the low bit
bit 31 is the high bit

Double 64 bit floating point value

bit 0 is the low bit
bit 63 is the high bit

String Typically null terminated, null padded or blank padded ASCII string.

For some drivers only, Strings include HiLo LoHi byte order selection.
Date 64 bit floating point value

www. kepware.com

9

Custom Interface Driver Help

Address Descriptions
Data is represented in a structure called a Shared Memory Data Register. Each register maintains separate Read
and Write values in addition to corresponding error, quality, timestamp, and status information. The following
information describes how to access Read and Write values. The syntax is as follows:

D<byte offset> [/ <string length>] [[<row>] [<column>]]

Component Action Description
<Byte Offset> Required Represents the registers byte offset relative to the devices memory map

offset.
<String Length> Optional String length.
<Row> Optional Array row count.
<Column> Optional Array column count.

Ranges
The maximum shared memory file size is limited to 2,147,483,648 bytes (2 gigabytes). This limitation will be
enforced at project load (schema) and address validation.

Valid Combinations/Hints
D<byte offset>
D<byte offset> / <string length>
D<byte offset> [<row>] [<column>]

Examples
8-bit value at byte offset 0
Address = D0
Data Type = Byte

32-character string value starting at byte offset 1000
Address = D1000/32
Data Type = String

www. kepware.com

10

Custom Interface Driver Help

Automatic Device/Tag Generation
The CIDA will be responsible for generating a configuration file that will be imported by the CID and used for
automatically generating devices and tags. When running as a System Service, this file should reside locally and
not in a network location. For more information, refer to Channel Setup.

The driver will perform automatic device/tag generation under the following circumstances:

1. Upon completion of the Channel Setup Wizard with a valid configuration file specified.

2. If the configuration file name changes in Dialog Mode and is then applied.

Device Import
Devices will be automatically generated based on the following information:

l Device Name
l Device Identifier
l Custom Properties

Note: The device identifier will not be validated. It is included for organizational purposes only.

Tag Import
Tags will be automatically generated based on the following information:

l Tag Name
l Tag Address
l Tag Data Type
l Tag Read/Write Access
l Tag Scan Rate (Milliseconds)
l Tag Description

Manually Starting Automatic Device/Tag Generation
To manually start automatic device/tag generation, open the Configuration tab in Channel Properties and
then click the Regenerate button.

www. kepware.com

11

Custom Interface Driver Help

Error Descriptions
The following error/warning messages may be generated. Click on the link for a description of the message.

General Errors
Cannot open Shared Memory file associated with Configuration <configuration name>. Please
verify CIDA is running with proper permissions and Configuration name is correct.

Read Errors
Unable to read from register <register offset> on device <device name>. Register is not configured
for read access.
Unable to read from register <register offset> on device <device name>. Register value type is not
configured for read data.
Unable to read from register <register offset> on device <device name>. Register corrupted.
Unable to read from register <register offset> on device <device name>. CIDA <CIDA name>
returned error code <error code>.

Write Errors
Unable to write to register <register offset> on device <device name>. Register is not configured
for write access.
Unable to write to register <register offset> on device <device name>. Register value type is not
configured for write data.
Unable to write to register <register offset> on device <device name>. Register corrupted.
Unable to write to register <register offset> on device <device name>. CIDA <CIDA name>
returned error code <error code>.

Cannot open shared memory file associated with configuration <configuration
name>. Please verify CIDA is running with proper permissions and
configuration name is correct.
Error Type:
Warning

Possible Cause:
No shared memory file and/or global mutex has been created or associated with configuration name
<configuration name>.

Solution:
Make sure that the CIDA is running and creating the shared memory file/global mutex associated with the
configuration name <configuration name>. Third-party utilities (such as Microsoft's Process Explorer) can be
used to determine if these resources have been created.

Notes:
For launch instructions, help location and support contact information, refer to the Support Information tab in
Channel Properties.

See Also:
Support Information

Unable to read to register <register offset> on device <device name>.
Register corrupted.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect Register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been imported.

www. kepware.com

12

Custom Interface Driver Help

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to read from register <register offset> on device <device name>.
Register is not configured for read access.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for the address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to read from register <register offset> on device <device name>.
CIDA <CIDA name> returned error code <error code>.
Error Type:
Warning

Possible Cause:
The device/data provider being polled/written by the CIDA has returned an error.

Solution:
For the help location and support contact information to determine the cause and solution for this error, refer to
the Support Information tab in Channel Properties.

See Also:
Support Information

Unable to read from register <register offset> on device <device name>.
Register value type is not configured for read data.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:

www. kepware.com

13

Custom Interface Driver Help

Support Information

Unable to write to register <register offset> on device <device name>.
Register is not configured for write access.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to write to register <register offset> on device <device name>.
Register value type is not configured for write data.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to write to register <register offset> on device <device name>. CIDA
<CIDA name> returned error code <error code>.
Error Type:
Warning

Possible Cause:
The device/data provider being polled/written by the CIDA has returned an error.

Solution:
For the help location and support contact information to determine the cause and solution for this error, refer to
the Support Information tab in Channel Properties.

See Also:
Support Information

www. kepware.com

14

Custom Interface Driver Help

Unable to write to register <register offset> on device <device name>.
Register corrupted.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

www. kepware.com

15

Custom Interface Driver Help

Developer Information
The Developer Information pages provide in-depth information for understanding and implementing a CID
Application. For information on a specific topic, select a link from the list below.

CIDA Overview
Shared Memory Interface
Reference Implementation

CIDA Overview
The Custom Interface Driver (CID) has two components: the CID driver plug-in (which runs within the OPC
server's process) and the Custom Interface Driver Application (CIDA). The Custom Interface Driver (CID) allows
external parties to push data into and out of the OPC server for reads and writes, while relying on the OPC server
to provide connectivity to all of its client/server protocols. The CIDA will be responsible for creating, initializing
and freeing the shared memory area. It will also be responsible for creating a configuration file, which must
conform to a schema defined by the OPC server for use with the CID. Users will be able to import the
configuration file from within the CID channel settings, which will automatically generate devices and tags in the
server.

Shared Memory
In order to gain access to shared memory, both the shared memory client and the server must acquire a lock.
Once acquired, the process can read and write to shared memory. Since only one process can hold the lock at a
time, the lock shouldn't be held for too long because it starves the other processes from operating. Once the
process is done working with the shared memory, it must release the lock immediately.

CIDA Requirements
The CIDA must use Win32 API for Shared Memory creation, initialization, usage, and destruction. Thus,
developers must use a language that supports Win32 API calls, such as C++, VB.NET, C#, or Java Native
Interface (JNI).

CIDA Functions
The following information describes specific functions and the order in which these actions must be performed.

1. The CIDA must create the shared memory file if one does not exist.

a. It must useOpenFileMappingwith or without security* to open the shared memory file. If the file cannot
be opened, use CreateFileMappingwith or without security* to create the shared memory file.

Note: Normally the CIDA creates the shared memory file and the CID opens the shared memory file. In the
case where the CIDA is restarted after the CID has gained access to the shared memory file, the CIDA will
be required to open the file (since it is already created).

b. File name must be of the form Global\<Configuration Name>_sm and cannot exceed 100 characters.

www. kepware.com

16

Custom Interface Driver Help

c. File size cannot exceed 2GB.

d. It must useMapViewOfFile/UnMapViewOfFile to map shared memory file into the CIDA's process
space.

e. It must use CloseHandle on exit to release the shared memory file.

2. The CIDA must create a global mutex for the purpose of locking access to the shared memory file.

a. It must use CreateMutex with or without security to create the mutex*.

Note: The mutex should be created and locked prior to creating and initializing the shared memory to
ensure that the CID does not access the memory prematurely.

b. Mutex name must be of the form Global\ <Configuration Name>_sm_lock.

3. The CIDA must conform to the Shared Memory Data Register structure in the following ways. For more
information, refer to Shared Memory Interface.

a. If the Register supports reads, it must be configured as follows.

ii. Assigns REGISTER.ReadOffset.

iii. Initializes DATA.STATUS flags to 0.

iv. Initializes VALUE.Type.

v. Initializes VALUE._Value.

vi. Initializes VALUE.ExtSize if register is a string or an array.

vii. Reserves VALUE.ExtSize bytes starting at VALUE.ExtValue for string and array data.

viii. Initializes VALUE.ExtValue for string and array data.

ix. Initializes STRINGARRAY.StringSize if register is a string array. STRINGARRAY must be cast
onto VALUE.ExtValue for string arrays.

b. If the Register supports writes, it must be configured as follows.

ii. Assigns REGISTER.WriteOffset.

iii. Initializes DATA.STATUS flags to 0.

iv. Initializes VALUE.Type.

v. Initializes VALUE._Value.

vi. Initializes VALUE.ExtSize if register is a string or an array.

vii. Reserves VALUE.ExtSize bytes starting at VALUE.ExtValue for string and array data.

viii. Initializes VALUE.ExtValue for string and array data.

ix. Initializes STRINGARRAY.StringSize if register is a string array. STRINGARRAY must be cast
onto VALUE.ExtValue for string arrays.

c. Checks WriteData.RequestPending to determine if a write request is available. When true:

ii. Caches the write value.

iii. Clears WriteData.RequestPending before performing the write.

iv. Performs the write.

d. Sets WriteData.Error/ErrorCode based on a successful or failed write response.

www. kepware.com

17

Custom Interface Driver Help

e. Sets WriteData.ResponsePending after WriteData.Error/ErrorCode is set on a successful or failed
write response.

f. Checks ReadData.RequestPending to determine if a read request is available. When true:

ii. Clears ReadData.RequestPending before performing the read.

iii. Performs the read.

g. Sets ReadData.Error/ErrorCode based on a successful or failed read response.

h. Sets ReadData.Quality on a successful or failed read response.

i. Sets ReadData.Timestamp on a successful or failed read response.

j. Sets ReadData.Value on a successful read response.

k. Sets ReadData.ResponsePending after items g. through j. are set on a successful or failed read
response.

4. The CIDA must release resources for global mutex and shared memory file using the following:

a. CloseHandle returned from CreateFileMapping.

b. CloseHandle returned from CreateMutex.

*Creating the shared memory file and mutex with security attributes is optional but recommended. The only
requirement is that the CID must be able to open these resources from where it is running.

Note: The CID will be running in the context of a Windows Service under the System Account by default.

Shared Memory Interface
The CID and CIDA communicate via Shared Memory by agreeing on a protocol that will be used to exchange
information (in the same way that an application communicates with hardware). This protocol or interface is
defined through structures, which are mapped onto the shared memory file's byte memory.

The main structure that defines a data item is the REGISTER structure. Each data item requires its own
REGISTER. Its location within the shared memory is set by the CIDA and is termed the byte offset in Address
Descriptions. The byte offset must be unique for each REGISTER. When calculating the byte offset, users must
take the footprint consumed by the REGISTER and its nested structures into account in order to prevent overlap
with other registers. This is important because overlapping registers pose a safety hazard: they can result in
timeouts and corrupt data.

For information on a specific structure, select a link from the list below.

REGISTER Structure
DATA Structure
VALUE Structure
STRINGARRAY Structure

REGISTER Structure
The following table describes how a register is arranged in Shared Memory.

Register Member Offset Size Description
DWORD ReadOffset 0 4 Value of 0 in this field is Write Only; otherwise, byte offset (R)

from beginning of this header to ReadData. This is usually 12
bytes.

DWORD WriteOffset 4 4 Value of 0 in this field is Read Only; otherwise, byte offset (W)
from beginning of this header to WriteData.

BYTE Reserved [4] 8 4 Reserved.
DATA ReadData* R Variable. Read data for this register.
DATA WriteData* W Variable. Write data for this register.

*For more information, refer toDATA Structure.

www. kepware.com

18

Custom Interface Driver Help

DATA Structure

Data Member Offset Size Description
typedef struct _tagSTATUS
{
WORD RequestPending : 1;

WORD ResponsePending :
1;

WORD Error : 1;

WORD Reserved : 13;
} STATUS

0 2 Status bit field.

True for new Read or Write request. Set by the CID, cleared
by the CIDA.

True when new Read or Write response (success or failure)
is available. Set by the CIDA, cleared by the CID.

True when ErrorCode is applicable. CID will not look at
ErrorCode if error is false. Set by the CIDA upon error
condition, cleared by CIDA when error condition no longer
exists.

Reserved.
DWORD ErrorCode 2 4 Vendor-specific error that will be posted in OPC server's

Event Log. The corresponding tag will be set to Quality. CID
will not look at ErrorCode if error is false.

WORD Quality 6 2 For valid OPC quality values, refer to the Visual C++ Custom
Interface VS2008 Example for a complete list of OPC Quality
values.

FILETIME Timestamp 8 8 64-bit structure representing the number of 100-
nanosecond intervals since 1/1/1601.

typedef struct
{
DWORD LowDateTime
DWORD HighDateTime
} FILETIME

VALUE Value* 16 13** The data value.

*For more information, refer to VALUE Structure.
**Size will exceed this value for string and array data.

VALUE Structure

Value
Member Offset Size Description

VALTYPE Type 0 2 Where VALTYPE is a WORD with possible values:

0 T_UNDEFINED
1 T_BOOL
2 T_BYTE
3 T_CHAR
4 T_WORD
5 T_SHORT
6 T_DWORD
7 T_LONG
8 T_FLOAT
9 T_DOUBLE
10 T_DATE
11 T_STRING
0x1000 T_ARRAY

Value cannot be of type T_ARRAY by itself, it must be
masked with one of the above types.

WORD 2 2 Reserved.

www. kepware.com

19

Custom Interface Driver Help

Reserved
union
{
BOOL boolVal
BYTE bVal
CHAR cVal
WORD wVal
SHORT iVal
DWORD dwVal
LONG lVal
FLOAT fltVal
DOUBLE dblVal
DATE dateVal
} _Value;

4 8 The data value will be stored in this union to facilitate easy
access without type conversion. The only exceptions are
string and array data, which will utilize ExtValue.

WORD ExtSize 12 2 Maximum number of bytes ExtValue is capable of storing.
ExtValue [] 14 Variable. The data value for string and array data will be stored at this

placeholder.

Strings and Arrays
String length and array data are unknown at compile time. They are application-specific and chosen at runtime.
String length and array data are stored in the byte array "ExtValue" in order to allow for variable length. The
number of bytes in ExtValue is stored in "ExtSize."

String Data
ExtValue will store the packed, wide character, null terminated string data. Wide characters use 2 bytes per
character, thereby allowing for Unicode strings. It is recommended that users be cautious when copying string
data into ExtValue, since ExtSize is the maximum number of bytes that can be stored in ExtValue, not the number
of characters. The number of characters that can be stored is ExtSize / 2.

Important: ExtSize is not the current length of the string.

Array Data
ExtValue will store the array data in the order given in the examples below.

Example 1
1 Dimensional Array (1 row, y columns)
Element[0], Element[1], …Element[n]

Example 2
2 Dimensional Arrays (x rows, y columns)
Element[0][0], … Element[0][y], Element [1][0], … Element[1][y], … Element[x][y]

String Arrays
A string array is defined as an array of equal length strings. They are stored similar to standard arrays with the
exception that a WORD precedes the array data, representing the maximum number of characters in each string
(not the length). The structure STRINGARRAY encapsulates this value and the array data to follow. For more
information, refer to STRINGARRAY Structure.

STRINGARRAY Structure

STRINGARRAY Member Offset Size Description
WORD StringSize 0 2 The size of each string in the array as a wide character

count. Each string in the array is of equal length.
BYTE Data [] 2 Variable. Placeholder for string array data.

Example
String Array D0/10 [5]
This is an array of 5, 10 character strings.

VALUE.ExtSize would equal (10 characters * 2 bytes per wide character) * 5 elements + size of (StringSize) =
102 bytes.

www. kepware.com

20

Custom Interface Driver Help

The STRINGARRAY would be cast onto VALUE.ExtValue where STRINGARRAY.StringSize would be set to 10.
Assuming the string data = "hello", "world", the first two array elements of STRINGARRAY.Data would be stored
as:

'h' 'e' 'l' 'l' 'o' 0x00 0x00 0x00 0x00 0x00, 'w' 'o' 'r' 'l' 'd' 0x00 0x00 0x00 0x00 0x00

Reference Implementation
A reference implementation is provided with the driver. It will do the following:

1. Create a shared memory file.

2. Create a mutex available to multiple processes.

3. Define two devices, each with a name, device identifier, and tag table.

4. Define a tag table for each device that contains at least 5 tags. Implementation should allow for expanding
the available number of tags by adding to the table only. Include string and array references so data
serialization can be fully demonstrated.

Each tag will have the following attributes:

- Name (such as Valve1).
- Register offset.
- Data type. The data types included are as follows:

a. Boolean

b. Char

c. Byte

d. Short

e. Word

f. Long

g. DWord

h. Float

i. Double

j. Date

k. String

- Array Size is -1 if not applicable.
- Description (such as Slurry output).
- Group (such as X Axis).

5. Simulate reading from a device by reading from a cached value on every request. This value is used as the
Read response.

6. Simulate writing to a device by writing to a cached value with the value in the Write request.

7. Perform the simulated Reads and Writes outside the shared memory lock.

8. Accept command line argument "exportconfig" to export the configuration file that meets the
requirements of the configuration schema. Shared memory name and size will be hard-coded in the
sample. The following support information is included:

a. Company Name: My Company

b. Phone: 1-888-555-1212

c. Email: support@mycompany.com

d. Configuration Launch Hint: At the command prompt…

www. kepware.com

21

Custom Interface Driver Help

e. Runtime Launch Hint: At the command prompt…

f. Help Launch Hint

g. Additional

9. Output XML in rudimentary fashion (such as string output), rather than utilizing XML DOM/SAX parser in
this reference implementation.

Reference Implementation Architecture
The Shared Memory Server requirements were listed in CIDA Overview. The following is for implementing a
reference sample only and not a requirement of all CIDAs. The four main classes are CRuntime, CDevice, CTag,
and CValue.

CRuntime

l Creates CDevices and CTags from table.
l Exports configuration settings to configuration file when requested.
l Thread for processing reads and writes.
l Owns list of CDevices.

CDevice

l Exports its settings to configuration file when requested.
l Provides next tag to process in CRuntime thread.
l Owns list of CTags.

CTag

l Exports its settings to configuration file when requested.
l Read and write data members for caching data from Shared Memory.

Note: Both Write data from Shared Memory and Simulated Read data are stored at this object.

CValue

l Performs value simulation.
l Manages extended value (arrays and strings) for local storage (CTag).
l Provides VALTYPE helper functions.
l Provides Date and Time conversion functions.

Threads
The Reference Implementation has two threads: Main Application Thread and Read/Write Thread. The Main
Application Thread is responsible for creating and destroying the Read/Write thread. It also fires a quit event
when the quit character is entered at the command line. The Read/Write Thread is responsible for reading from
or writing to the device and shared memory.

Read/Write to Device
1. If the current tag has its "Write request pending" flag set, the following will occur:

l A write will be performed to the device.
l Upon completion, the write result will be cached and the tag flag will be set as "Write response pending."

2. If the current tag has its "Read request pending" flag set, the following will occur:

l A read will be peformed from the device.
l Upon completion, the read result will be cached and the tag flag will be set as "Read response pending."

Read/Write to Shared Memory
1. If the current tag has its "Write response pending" flag set, the following will occur:

www. kepware.com

22

Custom Interface Driver Help

l The Shared Memory will be updated with the Write result.
l The Write ResponsePending flag will be set.

2. If the current tag has its "Read response pending" flag set, the following will occur:

l The Shared Memory will be updated with the Read result.
l The Read ResponsePending flag will be set.

3. Get a new tag to process. The walk list of devices and device's list of tags are as follows: first device, first tag;
first device, second tag and so on.

4. If the Shared Memory Register for the current tag has a Write RequestPending, set the "Write request
pending" flag on tag.

5. If the Shared Memory Register for the current tag has a Read RequestPending, set the "Read request pending"
flag on tag.

6. Read/Write to device.

CID/CIDA Reference Implementation Demonstration
For information on implementing CID/CIDA, follow the instructions below.

1. Click Start and then navigate to the Example Source Code menu. Then, select Custom Interface
Example Code | Visual C++ Custom Interface VS2008 Example.

2. Build "cidarefimplcpp" for Release Mode.

3. Once the CIDA executable file has been created, run the "exportconfig" command line against it to
generate the XML configuration file for the server. For example, <CIDA Filename>.exe -exportconfig.

4. Run "cidarefimplcpp.exe". A console will appear that says "Enter q to quit."

5. Next, launch the OPC server.

6. In the Administrator tool, select Configuration. Then, click File | New.

7. To invoke a new Channel Wizard, click on Click to add a channel.

www. kepware.com

23

Custom Interface Driver Help

8. ClickNext. In the drop-down box, select Custom Interface.

9. ClickNext.

10. ClickNext. When prompted to enter or browse for a configuration file, click on the browse button
(designated by ellipses) in order to invoke the File Open dialog.

www. kepware.com

24

Custom Interface Driver Help

11. In the OPC server's directory, browse to the projects directory and then select "cidarefimplcpp.xml."
Then, clickNext.

Note: If the file imported correctly, the Support Information will be visible in the configuration file.

12. To complete the Channel Wizard, clickNext and then click Finish. Devices and tags will be generated
automatically based on the configuration file.

13. Expand the channel: two devices called "Device1" and "MotionController1" should be visible. Expand the
devices: tags and tag groups should be visible.

14. Right-click on one of the devices and then select Properties.

15. In the Device Properties dialog, users will note that the Device Name was automatically imported, that
there are no models to choose from, and that the ID is disabled with "N/A."

www. kepware.com

25

Custom Interface Driver Help

16. Click on the Settings tab to display the Timing parameters. Click on the Configuration tab to display
the Configuration File and Advanced settings. For more information, refer toDevice Configuration.

17. Next, launch the OPC Quick Client that comes with the OPC server by clicking Tools | Launch OPC Quick
Client.

18. Browse to "Channel1.Device1" and "Channel1.MotionController1". Items will be mapping to the tags
within the OPC server.

19. Since "cidarefimplcpp.exe" was left running, all items should have Good quality with values ramping
every second. The exception will be the Boolean tags (which will toggle) and the String/String Array tags
(which will display an empty string).

Channel Diagnostics
Channel Diagnostics are available to help users troubleshoot CID and CIDA issues. Prior to performing any
function on shared memory, the CID will output a TX diagnostic frame detailing the nature of the function. Upon

www. kepware.com

26

Custom Interface Driver Help

completion, the CID will output an RX diagnostic frame detailing the results of the function. Channel Diagnostics
must be enabled in order to view these diagnostic frames. For more information, refer to "Channel Diagnostics" in
the OPC server's help file.

A code has been defined for each function and is derived from the following bit field. For more information on
specific function codes, refer to the Read and Write Transaction Frames below.

Bit 8 (Read/Write) Bit 7 (Get/Set) Bits 0-6 (Function Type)
0 (Read)
1 (Write)

0 (Get)
1 (Set)

0 (Reserved)
1 (Request Pending)
2 (Response Pending)
3 (Request)
4 (Response)

The shared memory interface functions in the CID return a code to denote the success or failure of that function.

Shared Memory
Return Code (SMRC) Definition

0 No Error
1 Invalid byte offset specified and/or Register corrupt.
2 For reads, REGISTER.ReadOffset is 0.

For writes, REGISTER.WriteOffset is 0.
3 Register DATA does not have a valid VALTYPE specified.

Read Transaction Frames
The possible read transaction frames that can be exchanged are as follows.

Set Read Request (0x43)
Request a read of the register at the specified offset.

TX:

Function 1 Byte 0x43
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

Function 1 Byte 0x43
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Get Read Response Pending (0x02)
Determine if a read response is available. If Pending Flag is not set in the defined timeout period, this read
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x02
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

Function 1 Byte 0x02
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Get Read Response Data Block (0x04)

www. kepware.com

27

Custom Interface Driver Help

Response from the last read request to the register at the specified offset.

TX:

Function 1 Byte 0x04
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x04
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Data x Bytes Read DATA structure of size x bytes

*Refer to Shared Memory Return Code table above.

Set Read Request Pending (0x41)
Used to clear the read request that timed out. This will prevent the CIDA from servicing the request at a later
time.

TX:

Function 1 Byte 0x41
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x41
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Read Response Pending (0x42)
Used to clear the read response when the last read request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0x42
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x42
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Write Transaction Frames
The possible write transaction frames that can be exchanged in the Channel Diagnostics window are as follows.

Get Write Request Pending (0x81)
Determine if the last write request has been processed.

TX:

Function 1 Byte 0x81
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

www. kepware.com

28

Custom Interface Driver Help

Function 1 Byte 0x81
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Set Write Request (0xC3)
Request a write to the register at the specified offset.

TX:

Function 1 Byte 0xC3
Register Byte Offset 4 Bytes 0-2,147,483,647
DATA.Quality 2 Bytes *
DATA.Timestamp 8 Bytes *
Value Size 4 Bytes Number of ASCII bytes to follow
Value x Bytes Value in ASCII form

*Refer toDATA Structure.

RX:
Function 1 Byte 0xC3
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte **

**Refer to Shared Memory Return Code table above.

Get Write Response Pending (0x82)
Determine if a write response is available. If Pending Flag is not set in the defined timeout period, this write
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x82
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x82
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Get Write Response (0x84)
Response from the last write request to the register at the specified offset.

TX:

Function 1 Byte 0x84
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x84
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
STATUS.Error 1 Byte 0 (False) or 1 (True)
DATA.ErrorCode 4 Bytes CIDA/Device Specific

www. kepware.com

29

Custom Interface Driver Help

DATA.Quality 2 Bytes **
DATA.Timestamp 8 Bytes **

*Refer to Shared Memory Return Code table above.
**Refer toDATA Structure.

Set Write Request Pending (0xC1)
Used to clear the write request that timed out. This will prevent the CIDA from servicing the request at a later
time.

TX:

Function 1 Byte 0xC1
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0xC1
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Write Response Pending (0xC2)
Used to clear the write response when the last write request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0xC2
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0xC2
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Channel Diagnostics
Channel Diagnostics are available to help users troubleshoot CID and CIDA issues. Prior to performing any
function on shared memory, the CID will output a TX diagnostic frame detailing the nature of the function. Upon
completion, the CID will output an RX diagnostic frame detailing the results of the function. Channel Diagnostics
must be enabled in order to view these diagnostic frames. For more information, refer to "Channel Diagnostics" in
the OPC server's help file.

A code has been defined for each function and is derived from the following bit field. For more information on
specific function codes, refer to the Read and Write Transaction Frames below.

Bit 8 (Read/Write) Bit 7 (Get/Set) Bits 0-6 (Function Type)
0 (Read)
1 (Write)

0 (Get)
1 (Set)

0 (Reserved)
1 (Request Pending)
2 (Response Pending)
3 (Request)
4 (Response)

The shared memory interface functions in the CID return a code to denote the success or failure of that function.

Shared Memory
Return Code (SMRC) Definition

www. kepware.com

30

Custom Interface Driver Help

0 No Error
1 Invalid byte offset specified and/or Register corrupt.
2 For reads, REGISTER.ReadOffset is 0.

For writes, REGISTER.WriteOffset is 0.
3 Register DATA does not have a valid VALTYPE specified.

Read Transaction Frames
The possible read transaction frames that can be exchanged are as follows.

Set Read Request (0x43)
Request a read of the register at the specified offset.

TX:

Function 1 Byte 0x43
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

Function 1 Byte 0x43
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Get Read Response Pending (0x02)
Determine if a read response is available. If Pending Flag is not set in the defined timeout period, this read
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x02
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

Function 1 Byte 0x02
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Get Read Response Data Block (0x04)
Response from the last read request to the register at the specified offset.

TX:

Function 1 Byte 0x04
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x04
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Data x Bytes Read DATA structure of size x bytes

*Refer to Shared Memory Return Code table above.

Set Read Request Pending (0x41)

www. kepware.com

31

Custom Interface Driver Help

Used to clear the read request that timed out. This will prevent the CIDA from servicing the request at a later
time.

TX:

Function 1 Byte 0x41
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x41
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Read Response Pending (0x42)
Used to clear the read response when the last read request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0x42
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x42
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Write Transaction Frames
The possible write transaction frames that can be exchanged in the Channel Diagnostics window are as follows.

Get Write Request Pending (0x81)
Determine if the last write request has been processed.

TX:

Function 1 Byte 0x81
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x81
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Set Write Request (0xC3)
Request a write to the register at the specified offset.

TX:

Function 1 Byte 0xC3
Register Byte Offset 4 Bytes 0-2,147,483,647
DATA.Quality 2 Bytes *
DATA.Timestamp 8 Bytes *

www. kepware.com

32

Custom Interface Driver Help

Value Size 4 Bytes Number of ASCII bytes to follow
Value x Bytes Value in ASCII form

*Refer toDATA Structure.

RX:
Function 1 Byte 0xC3
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte **

**Refer to Shared Memory Return Code table above.

Get Write Response Pending (0x82)
Determine if a write response is available. If Pending Flag is not set in the defined timeout period, this write
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x82
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x82
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Get Write Response (0x84)
Response from the last write request to the register at the specified offset.

TX:

Function 1 Byte 0x84
Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x84
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *
STATUS.Error 1 Byte 0 (False) or 1 (True)
DATA.ErrorCode 4 Bytes CIDA/Device Specific
DATA.Quality 2 Bytes **
DATA.Timestamp 8 Bytes **

*Refer to Shared Memory Return Code table above.
**Refer toDATA Structure.

Set Write Request Pending (0xC1)
Used to clear the write request that timed out. This will prevent the CIDA from servicing the request at a later
time.

TX:

Function 1 Byte 0xC1
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:

www. kepware.com

33

Custom Interface Driver Help

Function 1 Byte 0xC1
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Write Response Pending (0xC2)
Used to clear the write response when the last write request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0xC2
Register Byte Offset 4 Bytes 0-2,147,483,647
Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0xC2
Register Byte Offset 4 Bytes 0-2,147,483,647
SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

www. kepware.com

34

Custom Interface Driver Help

Index

A

Address Descriptions 10

Automatic Device/Tag Generation 11

C

Cannot open shared memory file associated with configuration <configuration name>. 12

Channel Configuration 4

Channel Diagnostics 26, 30

Channel Setup 4

CID/CIDA Reference Implementation Demonstration 23

CIDA Overview 16

CIDA Requirements 16

D

DATA Structure 19

Data Types Description 9

Developer Information 16

Device Configuration 7

Device Setup 7

E

Error Descriptions 12

H

Help Contents 3

O

Overview 3

R

Reference Implementation 21

Reference Implementation Architecture 22

www. kepware.com

35

Custom Interface Driver Help

REGISTER Structure 18

S

Settings 7

Shared Memory Interface 18

STRINGARRAY Structure 20

Support Information 5

U

Unable to read from register <register offset> on device <device name>. CIDA <CIDA name> returned error
code <error code>. 13

Unable to read from register <register offset> on device <device name>. Register is not configured for read
access. 13

Unable to read from register <register offset> on device <device name>. Register value type is not
configured for read data. 13

Unable to read to register <register offset> on device <device name>. Register corrupted. 12

Unable to write to register <register offset> on device <device name>. CIDA <CIDA name> returned error
code <error code>. 14

Unable to write to register <register offset> on device <device name>. Register corrupted. 15

Unable to write to register <register offset> on device <device name>. Register is not configured for write
access. 14

Unable to write to register <register offset> on device <device name>. Register value type is not configured
for write data. 14

V

VALUE Structure 19

www. kepware.com

36

	Table of Contents
	Custom Interface Driver Help
	Overview

	Channel Setup
	Channel Configuration
	Support Information

	Device Setup
	Device Configuration
	Settings

	Data Types Description
	Address Descriptions
	Automatic Device/Tag Generation
	Error Descriptions
	Cannot open shared memory file associated with configuration <configuration n...
	Unable to read to register <register offset> on device <device name>. Registe...
	Unable to read from register <register offset> on device <device name>. Regis...
	Unable to read from register <register offset> on device <device name>. CIDA ...
	Unable to read from register <register offset> on device <device name>. Regis...
	Unable to write to register <register offset> on device <device name>. Regist...
	Unable to write to register <register offset> on device <device name>. Regist...
	Unable to write to register <register offset> on device <device name>. CIDA <...
	Unable to write to register <register offset> on device <device name>. Regist...

	Developer Information
	CIDA Overview
	CIDA Requirements

	Shared Memory Interface
	REGISTER Structure
	DATA Structure
	VALUE Structure
	STRINGARRAY Structure

	Reference Implementation
	Reference Implementation Architecture
	CID/CIDA Reference Implementation Demonstration

	Channel Diagnostics
	Channel Diagnostics

	Index
	Bookmarks
	Shared_Mem_Ret_Code
	Shared_Mem_Ret_Code

