
Modbus Ethernet Driver Help

© 2015 Kepware, Inc.

Modbus Ethernet Driver Help

Table of Contents
Table of Contents 2

Modbus Ethernet Driver Help 4

Overview 4

Channel Setup 5

Device Setup 7

Ethernet 9

Settings 10

Block Sizes 13

Variable Import Settings 14

Error Handling 15

Unsolicited 16

Cable Diagrams 17

Modbus Master & Modbus Unsolicited Considerations 17

Automatic Tag Database Generation 18

Importing from Custom Applications 18

Exporting Variables from Concept 19

Exporting Variables from ProWORX 21

Optimizing Modbus Ethernet Communications 23

Data Types Description 24

Address Descriptions 25

Driver System Tag Addressing 25

Function Codes Description 25

Applicom Addressing 25

Generic Modbus 25

TSX Quantum 28

TSX Premium 30

CEG Addressing 32

Fluenta Addressing 32

Instromet Addressing 32

Mailbox Addressing 32

Modbus Addressing 33

Roxar Addressing 35

Statistics Items 36

Error Descriptions 38

Address Validation 38

Address <address> is out of range for the specified device or register. 38

Array size is out of range for address <address>. 38

Array support is not available for the specified address: <address>. 38

Data Type <type> is not valid for device address <address>. 38

Device address <address> contains a syntax error. 39

Device address <address> is not supported by model <model name>. 39

Device address <address> is read only. 39

Missing address 39

Device Status Messages 39

All channels are subscribed to a virtual network, stopping unsolicited communication. 40

www. kepware.com

2

Modbus Ethernet Driver Help

Starting unsolicited communication using TCP protocol through port <port>. 40

Device <device name> is not responding. 40

Failed to resolve host <host name> on device <device name>. 40

Modbus TCP/IP Ethernet channel <channel name> is in a virtual network, all devices reverted to use
one socket per device. 41

Socket error <code> occurred on <device name>. Operation <operation name> failed because
<reason>. 41

Unable to bind to adapter: <network adapter name>. Connect failed. 41

Unable to create a socket connection for device <device name>. 41

Unable to write to <address> on device <device name>. 42

Unable to write to address <address> on device <device>: Device responded with exception code
<code>. 42

Device Specific Messages 42

Bad address in block [x to y] on device <device name>. 42

Bad array spanning [<address> to <address>] on device <device name>. 43

Bad received length [x to y] on device <device name>. 43

Cannot change device ID <device ID> from <current mode> to <new mode> with a client connected. 43

Failure to initiate winsock.dll. 43

Failure to start unsolicited communications. 44

Unsolicited mailbox access for undefined device (IP: <device IP>.<device index>)... Closing socket. 44

Unsolicited mailbox memory allocation error (IP: <device IP>). 44

Unsolicited mailbox unsupported request received (IP: <device IP>). 44

Automatic Tag Database Generation Messages 44

Description truncated for import file record number <record>. 45

Error parsing import file record number <record>, field <field>. 45

File exception encountered during tag import. 45

Imported tag name <tag name> is invalid. Name changed to <tag name>. 45

Tag <tag name> could not be imported because data type <data type> is not supported. 45

Tag import failed due to low memory resources. 46

Modbus Exception Codes 47

Index 48

www. kepware.com

3

Modbus Ethernet Driver Help

Modbus Ethernet Driver Help
Help version 1.090

CONTENTS

Overview
What is the Modbus Ethernet driver?

Channel Setup
How do I configure a channel for use with this driver?

Device Setup
How do I configure a device for use with this driver?

Automatic Tag Database Generation
How can I easily configure tags for the Modbus Ethernet driver?

Optimizing a Modbus Ethernet Communications
How do I get the best performance from the Modbus Ethernet driver?

Data Types Description
What data types does the Modbus Ethernet driver support?

Address Descriptions
How do I reference a data location in a Modbus Ethernet device?

Error Descriptions
What error messages does the Modbus Ethernet driver produce?

Overview
The Modbus Ethernet driver provides a reliable way to connect Modbus Ethernet devices to OPC Client
applications; including HMI, SCADA, Historian, MES, ERP, and countless custom applications. Users must install
TCP/IP properly to use this driver. For more information on setup, refer to the Windows documentation.

Note: The driver will post messages when a failure occurs during operation.

www. kepware.com

4

Modbus Ethernet Driver Help

Channel Setup
Communication Serialization
The Modbus Ethernet driver supports Communication Serialization, which specifies whether data transmissions
should be limited to one channel at a time. For more information, refer to "Channel Properties - Advanced" in the
server help file.

Note:When Channel Serialization is enabled, both Unsolicited communications and the "Max sockets per device"
parameter will be disabled. The Mailbox Model is unavailable for Channel Serialization.

Ethernet
This dialog is used to specify channel-level Ethernet settings. Channel-level settings apply to all devices that have
been configured on the channel.

Descriptions of the parameters are as follows:

l Share a single socket across all devices on this channel:When checked, the Modbus Ethernet
driver will be forced to use only a single Windows socket for all active devices on the current channel. In
this mode, the driver will use the sameWindows socket for all communications. A socket will close and
reopen each time the driver switches to a new target device. In this way, each device will only see a single
connection.

Notes:
1. In some cases, it is undesirable for the Modbus Ethernet driver to maintain a connection if the

device has a limited number of connections available. The target device usually has a few or even
a single port available for connections. If a product like the Modbus Ethernet driver is using that
port, then no other systemmay access the target device. This parameter is useful in these
cases.

2. The ability to put the Modbus Ethernet driver into single socket mode is important when using
the Modbus Ethernet driver to talk with a Modbus-Ethernet-to-Modbus-RTU bridge product.
Most of these products allow users to connect multiple RS-485 serial-based devices to a single
Modbus-Ethernet-to-Modbus-RTU bridge. This parameter must be unchecked when a gateway
is handling a number of serial devices.

www. kepware.com

5

Modbus Ethernet Driver Help

l Use one or more sockets per device on this channel:When checked, the Modbus Ethernet driver
will use a Windows socket for each device on the network and maintain that socket as an active
connection. Because the driver does not re-establish a connection each time it reads or writes data to a
given device, this provides a high level of performance. The default setting is checked.

l Max sockets per device: This parameter specifies the maximum number of sockets per device. The
default setting is 1.

l Port Number: This parameter specifies the port number that the driver will use when listening for
unsolicited requests. The valid range is 0 to 65535. The default setting is 502.

l IP Protocol: This parameter specifies the protocol that the driver will use when listening for unsolicited
request. Options include User Datagram Protocol (UDP) or Transfer Control Protocol (TCP/IP). The default
setting is TCP/IP.

Unsolicited Settings
When the Modbus Ethernet driver is in Master mode, it has the ability to accept unsolicited requests. The driver
starts a listening thread for unsolicited data once the driver is loaded by the OPC server. This thread is global to
all channels configured in the OPC server. For example, if an OPC server project has three channels defined and
either setting is changed in one channel, that same change made will be made to the other two channels. The
listening thread will be restarted once the change is applied. The Event Log will post an event for the restart.

Note: The Modbus Ethernet driver requires Winsock V1.1 or higher.

www. kepware.com

6

Modbus Ethernet Driver Help

Device Setup
Supported Device Models
For more information on a specific device model, select a link from the list below.

Applicom
Ethernet to Modbus Plus Bridge
CEG
Fluenta
Instromet
Mailbox
Modbus Master
Modbus Unsolicited
Roxar

Applicom
This model supports Applicom addressing syntax for Generic Modbus, TSX Premium, and TSX Quantum devices.

Ethernet to Modbus Plus Bridge
The driver also has the ability to talk to Modbus Plus devices via an Ethernet to Modbus Plus Bridge. The Device ID
used should be the IP address of the bridge along with the Modbus Plus Bridge Index. For example, Bridge IP
205.167.7.12, Bridge Index 5 equates to a Device ID of 205.167.7.12.5. Consult the Modicon/Schneider
Automation distributor on obtaining and setting up a MBE to MBP Bridge.

CEG
This model supports the extended block size of CEG devices.

Fluenta
This model supports the non-standard Modbus mapping of the Fluenta FGM 100/130 Flow Computer.

Instromet
This model supports the non-standard Modbus mapping of Instromet devices.

Mailbox
This model affects the way unsolicited requests are handled. By defining a mailbox device, the driver does not act
like a PLC on the network. Instead, it acts as a storage area for every mailbox device that is defined. When the
driver receives an unsolicited command, the driver detects the IP address the message came from and places the
data in the storage area allocated for the device. If the message comes from a device with an IP address that has
not been defined as a mailbox device, the message is not processed. Any client application that reads or writes to
this type of device will read or write to the storage area are contained in the driver and not the physical device.
For information on sending unsolicited requests to the Modbus Ethernet driver, consult the Modicon
Documentation on the MSTR instruction.

Note: Modbus Mailbox does not support function code 22 (0x16). Only 0x10 (Holding Reg Write Multiple) and
0x6 (Holding Reg Write Single) are supported. Users can write to a single bit by turning off the "Use holding
register bit mask writes" option, which is located in the Settings tab of Device Properties. This forces it to use the
Read/Modify/Write sequence instead of directly writing to the bit. Only the Master Modbus device (not the
Mailbox) has to change its setting to get this to work.

See Also: Mailbox Client Privileges for Mailbox Device Model

Modbus Master
Most projects will be configured to function as a Modbus Master. In this mode, the driver will access a physical
device (such as the TSX Quantum or any other Modbus Open Ethernet compatible device).

Modbus Unsolicited
The Modbus Ethernet driver will act as a device on the network when Modbus is the selected model and is
configured with a Device ID equivalent to the host machine's IP address. The driver will accept all unsolicited
commands that are received and will attempt to process them as if it were just another PLC. Any Modbus master
on the network can communicate with this simulated device using its IP address.

The Device ID for a slave device is specified as YYY.YYY.YYY.YYY.XXX. The YYY can either be the loopback
address or the local IP address of the PC that is running the Modbus Ethernet driver. The XXX designates the
slave's Station ID and can be in the range 0 to 255.

www. kepware.com

7

Modbus Ethernet Driver Help

Multiple slave devices can have the same Station ID. In this scenario, all the devices that share the Station ID will
point to one common simulated device. If the remote master requests data from a slave device (Station ID) that
does not exist, then the response will contain data from station '0'. Once a slave device is created in the project,
that slave is enabled and will stay enabled until the server is shut down. Changing the Station ID will enable a
new slave device that will stay enabled until the server is shut down.

Addresses 1 to 65536 are implemented for output coils, input coils, internal registers, and holding registers. In
Unsolicited Mode, the driver will respond to any valid request to read or write these values from external devices
(Function Codes [decimal] 01, 02, 03, 04, 05, 06, 15, and 16). Furthermore, loopback (also known as Function
code 08, sub code 00) has been implemented in this driver. These locations can be accessed locally by the Host
PC as tags assigned to the slave device.

Note:Write Only access is not allowed for unsolicited devices.

Roxar
This model supports the non-standard Modbus mapping of the Roxar RFM Water Cut meter.

Maximum Number of Channels and Devices
The maximum number of supported channels is 256. The maximum number of supported devices is 8192.

Device ID (PLC Network Address)
The Device ID is used to specify the device IP address along with a Modbus Bridge Index on the Ethernet network.

Device IDs are specified as <HOST>.XXX, where HOST is a standard UNC/DNS name or an IP address. The XXX
designates the Modbus Bridge Index of the device and can be in the range of 0 to 255. If no bridge is used, the
index should be set to 0. Depending on the model and Device ID, a device could be configured to act as an
unsolicited or master device. For more information on unsolicited mode, refer toModbus Unsolicited.

Examples

1. When requesting data from a Modicon TSX Quantum device with IP address 205.167.7.19, the Device ID
should be entered as 205.167.7.19.0.

2. When requesting data from a Modbus Plus device connected to bridge index 5 of a Modbus Ethernet
Bridge with an IP address of 205.167.7.50, the Device ID should be entered as 205.167.7.50.5.

See Also: Cable Diagrams and Modbus Master & Modbus Unsolicited Considerations.

www. kepware.com

8

Modbus Ethernet Driver Help

Ethernet
This dialog is used to specify device-level Master/Slave solicited communications settings.

Descriptions of the parameters are as follows:

l Port Number: This parameter specifies the port number that the remote device is configured to use. The
valid range is 0 to 65535. The default setting is 502. The Modbus Ethernet driver will use this port
number when making solicited requests to a device.

Note: If the port system tag is used, the port number setting will be changed. For more information, refer
toDriver System Tag Addresses.

l IP Protocol: This parameter specifies whether the driver should connect to the remote device using the
User Datagram Protocol (UDP) or Transfer Control Protocol (TCP). The master and slave settings must
match. For example, if the slave's IP protocol setting is TCP/IP, then the master's IP protocol setting for
that device must also be TCP/IP.

Note: This driver requires Winsock V1.1 or higher.
l Close TCP Socket on Timeout: This option specifies whether the driver should close a TCP socket
connection if the device does not respond within the timeout. When checked, the driver will close the TCP
socket connection on timeout. When unchecked, the driver will continue to use the same TCP socket until
an error is received, the physical device closes the socket, or the driver is shutdown. The default setting
is checked.

Note: The Modbus Ethernet driver will always close the socket connection on a socket error.

www. kepware.com

9

Modbus Ethernet Driver Help

Settings

----- Data Access Group -----

Zero vs. One Based Addressing
If the address numbering convention for the device starts at one as opposed to zero, its value can be specified
when defining the device's parameters. By default, user-entered addresses will have one subtracted when
frames are constructed to communicate with a Modbus device. If the device does not follow this convention,
uncheck Use zero based addressing in Device Properties. For the appropriate application to obtain information
on setting Device Properties, refer to the online help documentation. The default behavior follows the convention
of the Modicon PLCs.

Zero vs. One Based Bit Addressing within Registers
Memory types that allow bits within Words can be referenced as a Boolean. The addressing notation for doing this
is <address>.<bit>, where <bit> represents the bit number within the Word. Zero Based Bit Addressing within
registers provides two ways of addressing a bit within a given Word; Zero Based and One Based. Zero Based Bit
addressing within registers means that the first bit begins at 0. One Based Bit Addressing within registers means
that the first bit begins at 1.

Zero Based Bit Addressing within Registers (Default Setting/Checked)

Data Type Bit Range
Word Bits 0–15

One Based Bit Addressing within Registers (Unchecked)

Data Type Bit Range
Word Bits 1–16

Holding Register Bit Mask Writes
When writing to a bit location within a holding register, the driver should only modify the bit of interest. Some
devices support a special command to manipulate a single bit within a register (Function code hex 0x16 or
decimal 22). If the device does not support this feature, the driver will need to perform a Read/Modify/Write
operation to ensure that only the single bit is changed.

Check this box if the device supports holding register bit access. The default setting is unchecked. When
checked, the driver will use function code 0x16, irrespective of the setting for Use Modbus function 06 for
single register writes. When unchecked, the driver will use either function code 0x06 or 0x10 depending on
the selection for Use Modbus function 06 for single register writes.

Note:When Modbus byte order is deselected, the byte order of the masks sent in the command will be Intel byte
order.

Use Modbus Function 06 or 16
The Modbus driver has the option of using two Modbus protocol functions to write Holding register data to the
target device. In most cases, the driver switches between these two functions based on the number of registers
being written. When writing a single 16-bit register, the driver will generally use the Modbus function 06. When
writing a 32-bit value into two registers, the driver will use Modbus function 16. For the standard Modicon PLC
the use of either of these functions is not a problem. There are, however, a large number of third party devices
that have implemented the Modbus protocol. Many of these devices support only the use of Modbus function 16 to
write to Holding registers regardless of the number of registers to be written.

The Use Modbus function 06 selection forces the driver to use only Modbus function 16 if needed. This
selection is checked by default, allowing the driver to switch between 06 and 16 as needed. If a device requires
all writes to be done using only Modbus function 16, uncheck this selection.

Note: For bit within word writes, theHolding Register Bit Mask Writes property takes precedence over this
property Use Modbus Function 06. If Holding Register Bit Mask Writes is selected, then function code
0x16 is used no matter what the selection for this property. If Holding Register Bit Mask Writes is not
selected, either function code 0x06 or 0x10 will be used for bit within word writes.

Use Modbus Function 05 or 15
The Modbus driver has the option of using two Modbus protocol functions to write output coil data to the target
device. In most cases, the driver switches between these two functions based on the number of coils being

www. kepware.com

10

Modbus Ethernet Driver Help

written. When writing a single coil, the driver will use the Modbus function 05. When writing an array of coils,
the driver will use Modbus function 15. For the standard Modicon PLC the use of either of these functions is not a
problem. There are many third party devices that have implemented the Modbus protocol, however: many of
these devices only support the use of Modbus function 15 to write to output coils regardless of the number of
coils to be written.

The Use Modbus function 05 selection forces the driver to use only Modbus function 15 if needed. This
selection is checked by default, allowing the driver to switch between 05 and 15 as needed. If a device requires
all writes to be done using only Modbus function 15, uncheck this selection.

Mailbox Client Privileges for Mailbox Device Model

l Read Only: Client applications can only read from amailbox memory map.
l Memory Map Writes: Client applications can read and write to the mailbox memory map.
l Device Writes: Client applications can only write to a device; reads are from the memory map.

----- Data Encoding Group -----

Modbus Byte Order
The byte order used by the Ethernet driver can be changed from the default Modbus byte ordering to Intel byte
ordering by using this selection. This selection will be checked by default, which is the normal setting for Modbus
compatible devices. If the device uses Intel byte ordering, deselecting this selection will enable the Modbus
driver to properly read Intel formatted data.

First Word Low in 32-Bit Data Types
Two consecutive registers' addresses in a Modbus device are used for 32-bit data types. It can be specified
whether the driver should assume the first word is the low or the high word of the 32-bit value. The default, first
word low, follows the convention of the Modicon Modsoft programming software.

First DWord Low in 64-Bit Data Types
Four consecutive registers' addresses in a Modbus device are used for 64-bit data types. It can be specified
whether the driver should assume the first DWord is the low or the high DWord of the 64-bit value. The default,
first DWord low, follows the default convention of 32-bit data types.

Use Modicon Bit Ordering
When checked, the driver will reverse the bit order on reads and writes to registers to follow the convention of
the Modicon Modsoft programming software. For example, a write to address 40001.0/1 will affect bit 15/16 in
the device when this option is enabled. This option is disabled (unchecked) by default.

Note: For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits depending on if
the driver is set at Zero Based or One Based Bit Addressing within registers.

MSB = Most Significant Bit
LSB = Least Significant Bit

Use Modicon Bit Ordering Checked

MSB LSB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Use Modicon Bit Ordering Unchecked (Default Setting)

MSB LSB
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Treat Longs as Double Precision Unsigned Decimal
When checked, the driver encodes/decodes Long and DWORD data types as values that range from 0 to
99999999. This format specifies that each word represents a value between 0 and 9999.

Values read above the specified range are not clamped, but the behavior is undefined. All read values are
decoded using the following formula:
[Read Value] = HighWord * 10000 + LowWord.

www. kepware.com

11

Modbus Ethernet Driver Help

Written values greater than 99999999 are clamped to the maximum value. All written values are encoded using
the following formula:
Raw Data = [Written Value]/10000 + [Written Value] % 10000.

Data Encoding Options Details
The following summarizes usage of the Data Encoding options.

l Use default Modbus byte order option sets the data encoding of each register/16-bit value.
l First word low in 32-bit data types option sets the data encoding of each 32-bit value and each double
word of a 64-bit value.

l First DWord low in 64-bit data types option sets the data encoding of each 64-bit value.

Data Types Use Default Modbus
Byte Order Applicable

First Word Low in 32-Bit
Data Types Applicable

First DWord Low in 64-Bit
Data Types Applicable

Word, Short,
BCD

Yes No No

Float, DWord,
Long, LBCD

Yes Yes No

Double Yes Yes Yes

If needed, use the following information and the device's documentation to determine the correct settings of the
Data Encoding options. The default settings are acceptable for the majority of Modbus devices.

Data Encoding Group Option Data Encoding
Use default Modbus byte
order Checked

High Byte (15..8) Low Byte (7..0)

Use default Modbus byte
order Unchecked

Low Byte (7..0) High Byte (15..8)

First word low in 32-bit data
types Unchecked

High Word (31..16)

High Word(63..48) of Double Word
in 64-bit data types

Low Word (15..0)

Low Word (47..32) of Double Word
in 64-bit data types

First word low in 32-bit data
types Checked

Low Word (15..0)

Low Word (47..32) of Double Word
in 64-bit data types

High Word (31..16)

High Word (63..48) of Double Word
in 64-bit data types

First DWord low in 64-bit data
types Unchecked

High Double Word (63..32) Low Double Word (31..0)

First DWord low in 64-bit data
types Checked

Low Double Word (31..0) High Double Word (63..32)

www. kepware.com

12

Modbus Ethernet Driver Help

Block Sizes

Descriptions of the parameters are as follows:

l Coil Block Sizes: This parameter specifies the output and input coil block sizes. Coils can be read from 8
to 2000 points (bits) at a time. The default setting for both Output and Input Coils is 32.

l Register Block Sizes: This parameter specifies the internal and external register block sizes. From 1 to
120 standard Modbus registers (16 bit) can be read at a time. The default setting for both Internal and
Holding Registers is 32.

Notes:
1. The Instromet, Roxar, and Fluenta models (which support 32-bit and 64-bit registers) require

special consideration. The Modbus protocol constrains the block size to be no larger than 256
bytes. This translates to a maximum of block size of 64 32-bit registers, or 32 64-bit registers
for these models.

2. The CEG model supports coil block sizes between 8 and 8000 in multiples of 8 and register block
sizes between 1 and 500. This model must only be used with CEG devices.

3. A "Bad address in block error" could occur if the Register Block sizes value is set above 120 and
a 32 or 64-bit data type is used for any tag. To prevent this from occurring, decrease the block
size value to 120.

l Perform Block Read on Strings:When checked, this option will block read string tags, which are
normally read individually. String tags will be grouped together depending on the selected block size.
Block reads can only be performed for Modbus model string tags.

Reasons to Change the Default Block Sizes

1. The device may not support block Read/Write operations of the default size. Smaller Modicon PLCs and
non-Modicon devices may not support the maximum data transfer lengths supported by the Modbus
Ethernet network.

www. kepware.com

13

Modbus Ethernet Driver Help

2. The device may contain non-contiguous addresses. If this is the case and the driver attempts to read a
block of data that encompasses undefined memory, the device will probably reject the request.

Variable Import Settings

Descriptions of the parameters are as follows:

l Variable Import File: This parameter specifies the exact location of the Concept or ProWORX variable
import file that the driver should use when the Automatic Tag Database Generation feature is enabled.

l Display Descriptions:When checked, this option will use imported tag descriptions (if present in file).

Note: For more information on configuring the Automatic Tag Database Generation feature (and how to create a
variable import file), refer to Automatic Tag Database Generation.

www. kepware.com

14

Modbus Ethernet Driver Help

Error Handling

Description of the parameter is as follows:

l Deactivate tags on illegal address exception:When checked, the driver will stop polling for a block
of data if the device returns Modbus exception code 2 (illegal address) or 3 (illegal data, such as number
of points) in response to a Read of that block. When unchecked, the driver will continue to poll that data
block. The default setting is checked.

www. kepware.com

15

Modbus Ethernet Driver Help

Unsolicited

Descriptions of the parameters are as follows:

l OPC Quality Bad Until Write: This option controls the initial OPC quality of tags attached to this driver.
When unchecked, all tags will have an initial value of 0 and an OPC quality of Good. This is the default
condition. When checked, all tags will have an initial value of 0 and an OPC quality of Bad. The tag's
quality will remain Bad until all coils or registers referenced by the tag have been written to by a Modbus
master or a client application. For example, a tag with address 400001 and data type DWord references
two holding registers: 400001 and 400002. This tag will not show Good quality until both holding
registers have been written to.

Note: If the device is not in unsolicited mode, this option will be grayed out.
l Communications Timeout: ___ Seconds: The communications timeout parameter sets the amount of
time the driver will wait for an incoming request before setting the device's tag quality to bad. After the
timeout has occurred, the only way to reset the timeout and allow all the tags to be processed normally is
to re-establish communications with the remote master or disable the communications timeout by setting
it to 0. When enabled, the valid range is 1 to 64,800 seconds (18 hours).

Note: If an incoming request comes for a slave device (Station ID) that does not exist, the request is
always directed to station '0'. In this case, the timeout for a slave device with Station ID '0' will not occur
even if it does not explicitly receive any remote communications for the timeout period.

Notes:

www. kepware.com

16

Modbus Ethernet Driver Help

1. Unsolicited devices require the model to be Modbus, and the Device ID to be IP_Address.yyy, where IP_
Address can be the local IP address of the PC running the driver. For example, 127.xxx.xxx.xxx, where
xxx=0-255, and yyy (Station ID)=0-255.

2. When the first unsolicited request for a slave device is received, the Event Log will display the following
informational message: "<date>__<time>__<level>__<source>__<event>". For example, "2/4/2011_
_4:53:10 PM Information__Modbus TCP/IP Ethernet__Created Memory for Slave Device <Slave
Number>".

3. For this driver, the terms Slave and Unsolicited are used interchangeably.

Cable Diagrams

Modbus Master & Modbus Unsolicited Considerations
The following notes pertain to both Modbus Master and Modbus Unsolicited devices.

l It is not recommended that a Mailbox device and a Modbus device be on the samemachine. Because a
master will only get data from one of these devices at a time, it is uncertain from which it will get data.

l It is recommended that master and unsolicited devices be placed on separate channels in the server
project for optimal unsolicited device tag processing.

l When a client is connected, the Device ID can only be changed if it does not result in change of mode
(master to slave or slave to master) of the device. The mode is changed by changing the loopback or local
IP address to a different IP address and vice versa. The loopback address and the local IP address (of the
PC running the driver) indicates slave (unsolicited) mode and any other IP address indicates master mode
of the device. When no client is connected, the mode can be changed in any manner (such as master to
master, master to slave, slave to slave, or slave to master).

Note: Any address in the format 127.xxx.xxx.xxx, where xxx is in the range 0-255 is loopback address.
l The Data Encoding Group settings must be the same in master and slave devices. For example, when a
device configured as a Modbus master is communicating with the device setup as a Modbus slave.

l For this driver, the terms Slave and Unsolicited are used interchangeably.

www. kepware.com

17

Modbus Ethernet Driver Help

Automatic Tag Database Generation
This driver supports the server's Automatic Tag Database Generation feature, which enables drivers to
automatically create tags that access data points used by the device's ladder program. Depending on the
configuration, tag generation may start automatically when the server project starts or be initiated manually at
some other time. The server's Event Log will show when tag generation started, any errors that occurred while
processing the variable import file, and when the process completed. For more information, refer to the server
help documentation.

Although it is sometimes possible to query a device for the information needed to build a tag database, this driver
must use a Variable Import File instead. Variable import files can be generated using the Concept and ProWORX
device programming applications. The import file must be in semicolon delimited Concept ".txt" format, which is
the default export file format of the Concept device programming application. The ProWORX programming
application can also export variable data in this format. For application-specific information on creating the
variable import file, refer to Exporting Variables from Concept and Exporting Variables from ProWORX.

See Also: Importing from Custom Applications

Importing from Custom Applications
Custom tags can be imported using the following CSV file format:

[Record Type] ; [Variable Name] ; [Data Type] ; [Address] ; [Set Value] ; [Comment] where:

l Record Type: This is a flag used in the Concept software, which is another way to import tags. It can be
N or E: both flags are treated the same.

l Variable Name: This is the name of the Static Tag in the server. It can be up to 256 characters in length.
l Data Type: This is the tag's data type. Supported data types are as follows:

l BOOL
l DINT
l INT
l REAL (32-bit Float)
l UDINT
l UINT
l WORD
l BYTE
l TIME (treated as a DWord)
l STRING

l Address: This is the tag's Modbus address. It can be up to 16 characters in length.
l Set Value: This is ignored, and should be kept blank.
l Comment: This is the description of the tag in the server. It can be up to 255 characters in length.

Examples

l N;Amps;WORD;40001;;Current in
l N;Volts;WORD;40003;;Volts in
l N;Temperature;REAL;40068;;Tank temp

www. kepware.com

18

Modbus Ethernet Driver Help

Exporting Variables from Concept
As the ladder program is created, symbolic names for the various data points referenced using the Variable
Editor can be defined. Additional symbols and constants that are not used by the ladder program can also be
defined.

Note: Although Concept allows variable names to be defined that begin with an underscore, such names are not
allowed by the OPC server. The driver will modify invalid imported tag names as needed and will make note of any
such name changes in the server's event log.

User defined data types are not currently supported by this driver. Records in the export file containing
references to such types will be ignored. The following data types are supported:

Concept Data Type Generated Tag Data Type
Bool Boolean
Byte Word
Dint Long
Int Short
Real Float
Time DWord
Udint DWord
Uint Word
Word Word
String String

Notes:

1. Unlocated variables, which are those that do not correspond to a physical address in the device, will be
ignored by the driver.

2. Comments are allowed and included as the generated tag descriptions. For more information, refer to
Variable Import Settings.

Exporting Data from Concept
Once the variables have been defined, the data must be exported from Concept.

1. To start, click File | Export and then select the Variables: Text delimited format.

www. kepware.com

19

Modbus Ethernet Driver Help

2. ClickOK.

3. Specify the filter and separator settings.

Note: Choose the filter settings as desired, but remember that this driver will only be able to read the
exported data if the default semicolon separator is used.

4. ClickOK to generate the file.

www. kepware.com

20

Modbus Ethernet Driver Help

Exporting Variables from ProWORX
For ProWORX to export the necessary variable information, the Symbols option must be checked under File |
Preferences. Symbolic names for various data points referenced can be defined while creating the ladder
program by using the Document Editor.

Notes:

1. Although ProWORX does not place many restrictions on variable names, the OPC server requires that tag
names consist of only alphanumeric characters and underscores. It also requires that the first character
cannot be an underscore. The driver will modify invalid imported tag names as needed, and any such
name changes will be noted in the server's Event Log.

2. ProWORX will assign a data type of either Bool or Int to the exported variables. The driver will create tags
of type Boolean and Short respectively. To generate tags with other data types, the exported file must be
manually edited and use any of the supported Concept data types. For a list of supported types, refer to
Exporting Variables from Concept.

Exporting Data From ProWorx
Once the variables have been defined, the data must be exported from ProWORX.

1. To start, select File | Utilities | Import/Export.

2. Next, select the Export and the Concept .TXT file formats.

3. Descriptors are allowed, and can be included as the generated tag descriptions. For more information,
refer to Variable Import Settings.

www. kepware.com

21

Modbus Ethernet Driver Help

4. ClickOK to generate the file.

www. kepware.com

22

Modbus Ethernet Driver Help

Optimizing Modbus Ethernet Communications
The Modbus Ethernet Driver has been designed to provide the best performance with the least amount of impact
on the system's overall performance. While the Modbus Ethernet Driver is fast, there are a couple of guidelines
that can be used to control and optimize the application and gain maximum performance.

The server refers to communications protocols like Modbus Ethernet as a channel. Each channel defined in the
application represents a separate path of execution in the server. Once a channel has been defined, a series of
devices must then be defined under that channel. Each of these devices represents a single Modbus controller
from which data will be collected. While this approach to defining the application will provide a high level of
performance, it won't take full advantage of the Modbus Ethernet Driver or the network. An example of how the
application may appear when configured using a single channel is shown below.

Each device appears under a single Modbus
Ethernet channel. In this configuration, the
driver must move from one device to the next
as quickly as possible to gather information at
an effective rate. As more devices are added
or more information is requested from a single
device, the overall update rate begins to
suffer.

If the Modbus Ethernet Driver could only define one single channel, then the example shown above would be the
only option available; however, the Modbus Ethernet Driver can define up to 256 channels. Using multiple
channels distributes the data collection workload by simultaneously issuing multiple requests to the network. An
example of how the same application may appear when configured using multiple channels to improve
performance is shown below.

Each device has now been defined under its
own channel. In this new configuration, a
single path of execution is dedicated to the
task of gathering data from each device. If the
application has 256 or fewer devices, it can be
optimized exactly how it is shown here.

The performance will improve even if the
application has more than 256 devices. While
256 or fewer devices may be ideal, the
application will still benefit from additional
channels. Although by spreading the device
load across all 256 channels will cause the
server to move from device to device again, it
can now do so with far less devices to process
on a single channel.

Block Size
Block size is another parameter that can affect the performance of the Modbus Ethernet Driver. The block size
parameter is available on each device being defined (on the OPC server screen, right-click on the device, choose
Properties and click the Blocks tab). The block size refers to the number of registers or bits that may be
requested from a device at one time. The driver's performance can be refined by configuring the block size to 1 to
120 registers and 8 to 2000 bits.

An additional performance gain can be realized by increasing theMaximum outstanding requests per socket
value. For more information, refer to Ethernet.

www. kepware.com

23

Modbus Ethernet Driver Help

Data Types Description

Data Type Description
Boolean Single bit
Word Unsigned 16-bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16-bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32-bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32-bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.
LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.
String Null terminated ASCII string

Supported on Modbus Model, includes Hi-Lo Lo-Hi byte order selection.
Double* 64-bit floating point value

The driver interprets four consecutive registers as a double precision value by making the
last two registers the high DWord and the first two registers the low DWord.

Double Example If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the 64-
bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

Float* 32-bit floating point value

The driver interprets two consecutive registers as a single precision value by making the
last register the high word and the first register the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-bit
data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

*The descriptions assume the default; that is, first DWord low data handling of 64-bit data types and first word
low data handling of 32-bit data types.

www. kepware.com

24

Modbus Ethernet Driver Help

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain specific
address information for the model of interest.

Applicom Addressing
CEG Addressing
Fluenta Addressing
Instromet Addressing
Mailbox Addressing
Modbus Addressing
Roxar Addressing

Driver System Tag Addressing
Port Tag
The Port system tag allows a client application to read and write the Port Number setting. Writes to this tag will
cause the driver to disconnect from the device and attempt to reconnect to the specified port. It will also modify
the project: the server will prompt a save on modified projects on shutdown.

Note: The Device Port Number setting is not used by the driver for unsolicited communications.

l Address: Port. It is not case sensitive.
l Data Types:Word, Short, DWord, and Long.
l Access: Read/Write.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

See Also: Ethernet

Function Codes Description
The Function Codes displayed in the table below are supported by the Modbus and Applicom device models.

Decimal Hexadecimal Description
01 0x01 Read Coil Status
02 0x02 Read Input Status
03 0x03 Read Holding Registers
04 0x04 Read Internal Registers
05 0x05 Force Single Coil
06 0x06 Preset Single Register
15 0x0F Force Multiple Coils
16 0x10 Preset Multiple Registers
22 0x16 Masked Write Register

Applicom Addressing
Applicom devices support three Applicom sub-models. For address information, select a link from the list below.

Generic Modbus
TSX Premium
TSX Quantum

Generic Modbus
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code
Bxxxxx 0-65535 Boolean Read/Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:

www. kepware.com

25

Modbus Ethernet Driver Help

Bxxxxx_cols with assumed row count of 1.
Bxxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot exceed
the output coil block size that was specified for this device.

Input Coils
Address Range Data Type Access Function Code
BIxxxxx 0-65535 Boolean Read Only 02

Array Support
Arrays are supported for the input coil addresses. The syntax for declaring an array is as follows:

BIxxxxx_cols with assumed row count of 1.
BIxxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot exceed
the input coil block size that was specified for the device.

Internal Registers
The default data types are shown in bold.

Note: For slave devices, Read Only locations are Read/Write.

Address Range Data Type Access Function
Code

WIxxxxx 0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Read Only 04

WIxxxxx.bb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read Only 04

WIxxxxx:Xbb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read Only 04

DIxxxxx 0-65534 DWord Read Only 04
FIxxxxx 0-65534 Float Read Only 04
WIxxxxx_S 0-65535 Short Read Only 04
WIxxxxx_B 0-65535 BCD Read Only 04
WIxxxxx_A** 0-65535 String Read Only 04
WIxxxxx_X<1, 2,
3>***

0-65535
0-65534

Word, Short, BCD
Float, DWord, Long, LBCD

Read Only 04

DIxxxxx_S 0-65534 Long Read Only 04
DIxxxxx_B 0-65534 LBCD Read Only 04
DIxxxxx_X<1, 2, 3>*** 0-65534 DWord Read Only 04
FIxxxxx_X<1, 2, 3>*** 0-65534 Float Read Only 04
M_WIxxxxx_n(H)
String with HiLo
Byte Order (H
optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read Only 04

M_WIxxxxx_nL
String with LoHi
Byte Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read Only 04

*For more information, refer to "Use 0-Based Bit Addressing" under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the internal register addresses. The syntax for declaring an array is as follows:

WIxxxxx_cols with assumed row count of 1.
WIxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.

www. kepware.com

26

Modbus Ethernet Driver Help

For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the internal register block size that
was specified for the device.

Holding Registers
The default data types are shown in bold.

Note: For slave devices, Read Only locations are Read/Write.

Address Range Data Type Access Function Code
Wxxxxx 0-65535

0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read/Write 03, 06, 16

Wxxxxx.bb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

Wxxxxx:Xbb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

Dxxxxx 0-65534 DWord Read/Write 03, 06, 16
Fxxxxx 0-65534 Float Read/Write 03, 06, 16
Wxxxxx_S 0-65535 Short Read/Write 03, 06, 16
Wxxxxx_B 0-65535 BCD Read/Write 03, 06, 16
Wxxxxx_A** 0-65535 String Read Only 03, 16
Wxxxxx_X<1, 2, 3>*** 0-65535

0-65534
Word, Short, BCD
Float, DWord, Long,
LBCD

Read/Write 03, 06, 16

Dxxxxx_S 0-65534 Long Read/Write 03, 06, 16
Dxxxxx_B 0-65534 LBCD Read/Write 03, 06, 16
Dxxxxx_X<1, 2, 3>*** 0-65534 DWord Read/Write 03, 06, 16
Fxxxxx_X<1, 2, 3>*** 0-65534 Float Read/Write 03, 06, 16
M_Wxxxxx_n(H)
String with HiLo
Byte Order (H
optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read/Write 03, 16

M_Wxxxxx_nL
String with LoHi
Byte Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read/Write 03, 16

*For more information, refer to "Use 0-Based Bit Addressing" under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal
addressing is as follows.

Wxxxxx_cols with assumed row count of 1.
Wxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the holding register block size that
was specified for the device.

String Support
The Applicommodel supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register will contain two bytes of ASCII data. The length of the string can
be from 1 to 120 words. For more information on performing a block read on string tags, refer to Block Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device<device>: Device responded with exception code 3" is
received in the server event window, the device does not support the string length. To fix this, shorten the string
to a supported length.

www. kepware.com

27

Modbus Ethernet Driver Help

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit Float.
The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low in 32-bit
Data Types are applied. For more information, refer to Settings.

Byte Switching Suffixes can only be used with Internal Registers and Holding Registers. For information on the
various types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix 16-Bit Data Types (Word, Short,
BCD) 32-Bit Data Types (DWord, Long, LBCD, Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)
_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)
_X3 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes in the

words)

TSX Quantum
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code
0xxxxx 1-65536 Boolean Read/Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:

0xxxxx_cols with assumed row count of 1.
0xxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65536. The total number of coils being requested cannot exceed
the output coil block size that was specified for the device.

Input Coils
Address Range Data Type Access Function Code
1xxxxx 1-65536 Boolean Read Only 02

Array Support
Arrays are supported for the input coil addresses. The syntax for declaring an array is as follows:

1xxxxx_cols with assumed row count of 1.
1xxxxx_rows_cols.

The base address+(rows*cols) cannot exceed 65536. The total number of coils being requested cannot exceed
the input coil block size that was specified for the device.

Internal Registers
The default data types are shown in bold.

Note: For slave devices, Read Only locations are Read/Write.

Address Range Data Type Access Function Code
3xxxxx 1-65536

1-65535
1-65533

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read Only 04

3xxxxx.bb xxxxx=1-65536
bb=0/1-15/16*

Boolean Read Only 04

3xxxxx:Xbb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read Only 04

D3xxxxx 1-65535 DWord Read Only 04
F3xxxxx 1-65535 Float Read Only 04
3xxxxx_S 1-65536 Short Read Only 04

www. kepware.com

28

Modbus Ethernet Driver Help

Address Range Data Type Access Function Code
3xxxxx_B 1-65536 BCD Read Only 04
3xxxxx_A** 1-65536 String Read Only 04
3xxxxx_X<1, 2, 3>*** 1-65536

1-65535
Word, Short, BCD
Float, DWord, Long,
LBCD

Read Only 04

D3xxxxx_S 1-65535 Long Read Only 04
D3xxxxx_B 1-65535 LBCD Read Only 04
D3xxxxx_X<1, 2, 3>*** 1-65535 DWord Read Only 04
F3xxxxx_X<1, 2, 3>*** 1-65535 Float Read Only 04
M_3xxxxx_n(H)
String with HiLo
Byte Order (H
optional)

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read Only 04

M_3xxxxx_nL
String with LoHi
Byte Order

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read Only 04

*For more information, refer to "Use 0-Based Bit Addressing" under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the internal register addresses. The syntax for declaring an array is as follows:

3xxxxx_cols with assumed row count of 1.
3xxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65536.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65535.
For all arrays, the total number of registers being requested cannot exceed the internal register block size that
was specified for the device.

Holding Registers
The default data types are shown in bold.

Note: For slave devices, Read Only locations are Read/Write.

Address Range Data Type Access Function
Code

4xxxxx 1-65536
1-65535
1-65533

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Read/Write 03, 06, 16

4xxxxx.bb xxxxx=1-65536
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

4xxxxx:Xbb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

D4xxxxx 1-65535 DWord Read/Write 03, 06, 16
F4xxxxx 1-65535 Float Read/Write 03, 06, 16
4xxxxx_S 1-65536 Short Read/Write 03, 06, 16
4xxxxx_B 1-65536 BCD Read/Write 03, 06, 16
4xxxxx_A** 1-65536 String Read Only 03, 16
4xxxxx_X<1, 2, 3>*** 1-65536

1-65535
Word, Short, BCD
Float, DWord, Long, LBCD

Read/Write 03, 06, 16

D4xxxxx_S 1-65535 Long Read/Write 03, 06, 16
D4xxxxx_B 1-65535 LBCD Read/Write 03, 06, 16
D4xxxxx_X<1, 2,
3>***

1-65535 DWord Read/Write 03, 06, 16

F4xxxxx_X<1, 2, 3>*** 1-65535 Float Read/Write 03, 06, 16
M_4xxxxx_n(H)
String with HiLo

xxxxx=1-65536
n is string length

String Read/Write 03, 16

www. kepware.com

29

Modbus Ethernet Driver Help

Address Range Data Type Access Function
Code

Byte Order (H
optional)

range is 1 to 120
words

M_4xxxxx_nL
String with LoHi
Byte Order

xxxxx=1-65536
n is string length
range is 1 to 120
words

String Read/Write 03, 16

*For more information, refer to "Use 0-Based Bit Addressing" under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal
addressing is as follows.

4xxxxx_cols with assumed row count of 1.
4xxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65536.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65535.
For all arrays, the total number of registers being requested cannot exceed the holding register block size that
was specified for the device.

String Support
The Applicommodel supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register will contain two bytes of ASCII data. The length of the string can
be from 1 to 120 words. For information on performing a block read on string tags, refer to Block Sizes.

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device <device>: Device responded with exception code 3"
is received in the server event window, the device does not support the string length. To fix this, shorten the
string to a supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit Float.
The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low in 32-bit
Data Types are applied. For more information, refer to Settings.

Byte Switching Suffixes can only be used with Internal Registers and Holding Registers. For information on the
various types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix 16-Bit Data Types (Word, Short,
BCD) 32-Bit Data Types (DWord, Long, LBCD, Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)
_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)
_X3 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes in the

words)

TSX Premium
All Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Output Coils
Address Range Data Type Access Function Code
%MXxxxxx 0-65535 Boolean Read/Write 01, 05, 15
%Mxxxxx 0-65535 Boolean Read/Write 01, 05, 15

Array Support
Arrays are supported for the output coil addresses. The syntax for declaring an array is as follows:

%MXxxxxx_cols with assumed row count of 1.
%MXxxxxx_rows_cols.

www. kepware.com

30

Modbus Ethernet Driver Help

The base address+(rows*cols) cannot exceed 65535. The total number of coils being requested cannot exceed
the output coil block size that was specified for the device.

Holding Registers
The default data types are shown in bold.

Note: For slave devices, Read Only locations are Read/Write.

Address Range Data Type Access Function
Code

%MWxxxxx 0-65535
0-65534
0-65532

Word, Short, BCD
Float, DWord, Long,
LBCD
Double

Read/Write 03, 06, 16

%MWxxxxx.bb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

%MWxxxxx:Xbb xxxxx=0-65535
bb=0/1-15/16*

Boolean Read/Write 03, 06, 16, 22

%DWxxxxx
or %MDxxxxx

0-65534 DWord Read/Write 03, 06, 16

%FWxxxxx
or %MFxxxxx

0-65534 Float Read/Write 03, 06, 16

%MWxxxxx_S 0-65535 Short Read/Write 03, 06, 16
%MWxxxxx_B 0-65535 BCD Read/Write 03, 06, 16
%MWxxxxx_A** 0-65535 String Read Only 03, 16
%MWxxxxx_X<1, 2, 3>*** 0-65535

0-65534
Word, Short, BCD
Float, DWord, Long,
LBCD

Read/Write 03, 06, 16

%DWxxxxx_S 0-65534 Long Read/Write 03, 06, 16
%DWxxxxx_B 0-65534 LBCD Read/Write 03, 06, 16
%DWxxxxx_X<1, 2, 3>***
or %MDxxxxx_X<1, 2, 3>***

0-65534 DWord Read/Write 03, 06, 16

%FWxxxxx_X<1, 2, 3>***
or %MFxxxxx_X<1, 2, 3>***

0-65534 Float Read/Write 03, 06, 16

M_%MWxxxxx_n(H)
String with HiLo
Byte Order (H optional)

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read/Write 03, 16

M_%MWxxxxx_nL
String with LoHi Byte Order

xxxxx=0-65535
n is string length
range is 1 to 120
words

String Read/Write 03, 16

*For more information, refer to "Use 0-Based Bit Addressing" under Settings.
**The length of the string is 2 bytes.
***For more information, refer to Byte Switching Suffixes.

Array Support
Arrays are supported for the holding register addresses. The syntax for declaring an array using decimal
addressing is as follows:

%MWxxxxx_cols with assumed row count of 1.
%MWxxxxx_rows_cols.

For Word, Short, and BCD arrays, the base address+(rows*cols) cannot exceed 65535.
For Float, DWord, Long, and Long BCD arrays, the base address+(rows*cols*2) cannot exceed 65534.
For all arrays, the total number of registers being requested cannot exceed the holding register block size that
was specified for the device.

String Support
The Applicommodel supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register will contain two bytes of ASCII data. The length of the string can
be from 1 to 120 words. For more information on performing block read on string tags, refer to Block Sizes.

www. kepware.com

31

Modbus Ethernet Driver Help

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device<device>: Device responded with exception code 3" is
received in the server event window, the device does not support the string length. To fix this, shorten the string
to a supported length.

Byte Switching Suffixes
These suffixes are used to switch the bytes that compose data of type 16-bit Word, 32-bit DWord, or 32-bit Float.
The byte switching is applied after the device-level settings for Modbus Byte Order and First Word Low in 32-bit
Data Types are applied. For more information, refer to Settings.

Byte Switching Suffixes can only be used with Internal Registers and Holding Registers. For information on the
various types of switching that depend on the suffix and data type of the item, refer to the table below.

Suffix 16-Bit Data Types (Word, Short,
BCD) 32-Bit Data Types (DWord, Long, LBCD, Float)

_X1 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O4 O3 O2 O1 (Byte switching)
_X2 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O3 O4 O1 O2 (Word switching)
_X3 O1 O2 -> O2 O1 (Byte switching) O1 O2 O3 O4 -> O2 O1 O4 O3 (Switching bytes in the

words)

CEG Addressing
Addressing for the CEG device model is the same as that for the Modbus device model. For more information,
refer toModbus Addressing.

Fluenta Addressing
The default data types are shown in bold.

Address Range Data Type Access
System 400000-409999 Float, Double Read/Write
Output 410000-410999

420000-420999
430000-430999

Float, Double Read Only

User 411000-411999
421000-421999
431000-431999

Float, Double Read/Write

Service 412000-412999
422000-422999
432000-432999

Float, Double Read/Write

Accumulation 413000-413999
423000-423999
433000-433999

Float, Double Read Only

Instromet Addressing
The default data types are shown in bold.

Address Range Data Type Access
Short Integers 400000-400199 Word, Short Read Only
Long Integers 400200-400399 DWord, Long Read Only
Floats 400400-400599 Float Read Only

Mailbox Addressing
The default data types are shown in bold.

Decimal Addressing
Address Range Data Type Access
4xxxxx 1-65536 Word, Short, BCD Read/Write
4xxxxx.bb xxxxx=1-65536

bb=0-15
Boolean Read/Write

4xxxxx 1-65535 Float, DWord, Long, LBCD Read/Write

www. kepware.com

32

Modbus Ethernet Driver Help

Hexadecimal Addressing
Address Range Data Type Access
H4yyyyy 1-10000 Word, Short, BCD Read/Write
H4yyyyy.c yyyyy=1-10000

c=0-F
Boolean Read/Write

H4yyyy 1-FFFF Float, DWord, Long, LBCD Read/Write

Note: Modbus Mailbox does not support function code 22 (0x16). Only 0x10 (Holding Reg Write Multiple) and
0x6 (Holding Reg Write Single) are supported. It is possible to write to a single bit by turning off Use holding
register bit mask writes in Device Properties under the settings tab. This forces it to use the
Read/Modify/Write sequence instead of directly writing to the bit. Only theMaster Modbus device (not the
Mailbox) has to change its setting to get this to work.

Arrays
Arrays are also supported for the holding register addresses. The syntax for declaring an array (using decimal
addressing) is as follows:

4xxxx[cols] with assumed row count of 1.
4xxxx[rows][cols].

For Word, Short and BCD arrays, the base address+(rows*cols) cannot exceed 65536.

For Float, DWord, Long and Long BCD arrays, the base address+(rows*cols* 2) cannot exceed 65535.

For all arrays, the total number of registers being requested cannot exceed the holding register block size that
was specified for this device.

Modbus Addressing
For this driver, the terms Slave and Unsolicited are used interchangeably.

5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits represent
the device's data item. The maximum value of the data item is a two-byte unsigned integer (65,535). Internally,
this driver requires six digits to represent the entire address table and item. It is important to note that many
Modbus devices may not support the full range of the data item. To avoid confusion when entering an address for
such a device, this driver "pads" the address (adds a digit) according to what was entered in the address field. If
a primary table type is followed by up to 4 digits (example: 4x, 4xx, 4xxx or 4xxxx), the address stays at or pads,
with extra zeroes, to five (5) digits. If a primary table type is followed by five (5) digits (example: 4xxxxx), the
address does not change. Internally, addresses entered as 41, 401, 4001, 40001 or 400001 are all equivalent
representations of an address specifying primary table type 4 and data item 1.

Primary Table Description
0 Output Coils
1 Input Coils
3 Internal Registers
4 Holding Registers

Modbus Addressing in Decimal Format
The Function Codes are displayed in decimal. For more information, refer to Function Codes Description.

Address Type Range Data Type Access* Function
Codes

Output Coils 000001-065536 Boolean Read/Write 01, 05, 15
Input Coils 100001-165536 Boolean Read Only 02
Internal
Registers

300001-365536
300001-365535
300001-365533

xxxxx=1-65536
bb=0/1-15/16**

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read Only
Read Only
Read Only

Read Only

04
04
04

04

www. kepware.com

33

Modbus Ethernet Driver Help

Address Type Range Data Type Access* Function
Codes

300001.2H-
365536.240H***

300001.2L-
365536.240L***

String

String

Read Only

Read Only

04

04

Holding
Registers

400001-465536
400001-465535
400001-465533

xxxxx=1-65536
bb=0/1-15/16*

400001.2H-
465536.240H***

400001.2L-
465536.240L***

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read/Write
Read/Write
Read/Write

Read/Write

Read/Write

Read/Write

03, 06, 16
03, 06, 16
03, 06, 16

03, 06, 16, 22

03, 16

03, 16

*For slave devices, Read Only locations are Read/Write.
**For more information, refer to "Zero vs. One Based Addressing" in Settings.
***.Bit is string length, range 2 to 240 bytes.

Modbus Addressing in Hexadecimal Format
Address Type Range Data Type Access*
Output Coils H000001-H010000 Boolean Read/Write
Input Coils H100001-H110000 Boolean Read Only
Internal
Registers

H300001-H310000
H300001-H30FFFF
H300001-H30FFFD

yyyyy=1-10000
cc=0/1-F/10

H300001.2H-H3FFFF.240H**

H300001.2L-H3FFFF.240L**

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read Only
Read Only
Read Only

Read Only

Read Only

Read Only
Holding
Registers

H400001-H410000
H400001-H40FFFF
H400001-H40FFFD

yyyyy=1-10000
cc=0/1-F/10

H400001.2H-H4FFFF.240H

H400001.2L-H4FFFF.240L

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

String

String

Read/Write
Read/Write
Read/Write

Read/Write

Read/Write

Read/Write

*For slave devices, Read Only locations are Read/Write.
**.Bit is string length, range 2 to 240 bytes.

Packed Coils
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is
available for both Input Coils and Output Coils when in Polled Mode only. It is not available to devices that are
configured to access the unsolicited memory map or that are in Mailbox Mode. The decimal syntax is 0xxxxx#nn,
where:

l xxxxx is the address of the first coil (with a range of 000001-065521).
l nn is the number of coils that will be packed into an analog value (with a range of 01-16).

The hexadecimal syntax is H0yyyyy#nn, where:

www. kepware.com

34

Modbus Ethernet Driver Help

l yyyyy is the address of the first coil (with a range of H000001-H000FFF1).
l nn is the number of coils that will be packed into an analog value (with a range of 01-16).

Notes:

1. The only valid data type is Word. Output Coils have Read/Write access, whereas Input Coils have Read
Only access. In decimal addressing, Output Coils support Function Codes 01 and 15, whereas Input Coils
support Function Code 02.

2. The bit order will be such that the start address will be the Least Significant Bit (LSB) of analog value.

Write Only Access
All Read/Write addresses may be set as Write Only by prefixing a "W" to the address such as "W40001", which
will prevent the driver from reading the register at the specified address. Any attempts by the client to read a
Write Only tag will result in obtaining the last successful write value to the specified address. If no successful
writes have occurred, then the client will receive 0/NULL for numeric/string values for an initial value.

Caution: Setting the Write Only tags client access privileges to Read Only will cause writes to these tags to fail
and the client to always receive 0/NULL for numeric/string values.

Mailbox Mode
Only Holding Registers are supported in Mailbox Mode. When read from a client, the data is read locally from a
cache, not from a physical device. When written to from a client, the data is written to both the local cache and
the physical device as determined by the Device ID routing path. For more information, refer toMailbox Mode.

Note: The Double data type is not supported.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register will contain two bytes of ASCII data. The order of the ASCII data
within a given register can be selected when the string is defined. The length of the string can be from 2 to 240
bytes and is entered in place of a bit number. The length must be entered as an even number. Appending either
an "H" or "L" to the address specifies the byte order.

Note: For more information on performing block reads on string tags for the Modbus model, refer to Block
Sizes.

Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter
"40200.100H".

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter "40500.78L".

Note: String length may be limited by the maximum size of the write request allowed by the device. If the error
message "Unable to write to address <address> on device<device>: Device responded with exception code 3" is
received in the server event window, the device did not like the length of the string. If possible, try shortening
the string.

Array Support
Arrays are supported both for internal and holding register locations (including all data types except Boolean and
String) and for input and output coils (Boolean data types). There are two ways to address an array. The
following examples apply to holding registers:

4xxxx [rows] [cols]
4xxxx [cols] with assumed row count of one.

For Word, Short and BCD arrays, the base address + (rows * cols) cannot exceed 65536. For Float, DWord,
Long, and Long BCD arrays, the base address + (rows * cols * 2) cannot exceed 65535. For all arrays, the total
number of registers being requested cannot exceed the holding register block size that was specified for this
device.

Roxar Addressing
The default data types are shown in bold.

www. kepware.com

35

Modbus Ethernet Driver Help

Address Range Data Type Access
Short Integers 403000-403999 Word, Short Read/Write
Floats 407000-407999 Float Read/Write
Floats 409000-409999 Float Read Only

Statistics Items
Statistical items use data collected through additional diagnostics information, which is not collected by default.
To use statistical items, Communication Diagnostics must be enabled. To enable Communication Diagnostics,
right-click on the channel in the Project View and click Properties | Enable Diagnostics. Alternatively, double-
click on the channel and select Enable Diagnostics.

Channel-Level Statistics Items
The syntax for channel-level statistics items is <channel>._Statistics.

Note: Statistics at the channel level are the sum of those same items at the device level.

Item Data Type Access Description
_CommFailures DWord Read/Write The total number of times communication

has failed (or has run out of retries).
_ErrorResponses DWord Read/Write The total number of valid error responses

received.
_ExpectedResponses DWord Read/Write The total number of expected responses

received.
_LastResponseTime String Read Only The time at which the last valid response

was received.
_LateData DWord Read/Write The total number of times that a driver

tag's data update occurred later than
expected (based on the specified scan
rate).

_MsgResent DWord Read/Write The total number of messages sent as a
retry.

_MsgSent DWord Read/Write The total number of messages sent
initially.

_MsgTotal DWord Read Only The total number of messages sent (both
_MsgSent + _MsgResent).

_PercentReturn Float Read Only The proportion of expected responses
(Received) to initial sends (Sent) as a
percentage.

_PercentValid Float Read Only The proportion of total valid responses
received (_TotalResponses) to total
requests sent (_MsgTotal) as a
percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to
the _Reset Tag causes all diagnostic
counters to be reset at this level.

_RespBadChecksum* DWord Read/Write The total number of responses with
checksum errors.

_RespTimeouts DWord Read/Write The total number of messages that failed
to receive any kind of response.

_RespTruncated DWord Read/Write The total number of messages that
received only a partial response.

_TotalResponses DWord Read Only The total number of valid responses
received (_ErrorResponses + _
ExpectedResponses).

* The _RespBadChecksum statistic is not implemented; packet checksums are handled by the TCP protocol.

Statistical items are not updated in simulation mode (see device general properties).

Device-Level Statistics Items
The syntax for device-level statistics items is <channel>.<device>._Statistics.

www. kepware.com

36

Modbus Ethernet Driver Help

Item Data Type Access Description
_CommFailures DWord Read/Write The total number of times communication

has failed (or has run out of retries).
_ErrorResponses DWord Read/Write The total number of valid error responses

received.
_ExpectedResponses DWord Read/Write The total number of expected responses

received.
_LastResponseTime String Read Only The time at which the last valid response

was received.
_LateData DWord Read/Write The total number of times that a driver

tag's data update occurred later than
expected (based on the specified scan
rate).

_MsgResent DWord Read/Write The total number of messages sent as a
retry.

_MsgSent DWord Read/Write The total number of messages sent
initially.

_MsgTotal DWord Read Only The total number of messages sent (both
_MsgSent + _MsgResent).

_PercentReturn Float Read Only The proportion of expected responses
(Received) to initial sends (Sent) as a
percentage.

_PercentValid Float Read Only The proportion of total valid responses
received (_TotalResponses) to total
requests sent (_MsgTotal) as a
percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to
the _Reset Tag causes all diagnostic
counters to be reset at this level.

_RespBadChecksum* DWord Read/Write The total number of responses with
checksum errors.

_RespTimeouts DWord Read/Write The total number of messages that failed
to receive any kind of response.

_RespTruncated DWord Read/Write The total number of messages that
received only a partial response.

_TotalResponses DWord Read Only The total number of valid responses
received (_ErrorResponses + _
ExpectedResponses).

* The _RespBadChecksum statistic is not implemented; packet checksums are handled by the TCP protocol.

Statistical items are not updated in simulation mode (see device general properties).

www. kepware.com

37

Modbus Ethernet Driver Help

Error Descriptions
The following classes of messages may be generated. Click on a link for a list of messages.

Address Validation
Device Status Messages
Device Specific Messages
Automatic Tag Database Generation Messages
Modbus Exception Codes

Address Validation
The following error/warning messages may be generated. Click on the link for a description of the message.

Address <address> is out of range for the specified device or register.
Array size is out of range for address <address>.
Array support is not available for the specified address: <address>.
Data Type <type> is not valid for device address <address>.
Device address <address> contains a syntax error
Device address <address> is not supported by model <model name>.
Device address <address> is read only.
Missing address.

Address <address> is out of range for the specified device or register.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is beyond the range of supported
locations for the device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application.

Array size is out of range for address <address>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically is requesting an array size that is too large for the address type or
block size of the driver.

Solution:
Re-enter the address in the client application to specify either a smaller value for the array or a different starting
point.

Array support is not available for the specified address: <address>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains an array reference for an address type that doesn't
support arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

Data Type <type> is not valid for device address <address>.
Error Type:
Warning

www. kepware.com

38

Modbus Ethernet Driver Help

Possible Cause:
A tag address that has been specified statically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address <address> contains a syntax error.
Error Type:
Warning

Possible Cause:
An invalid tag address has been specified in a dynamic request.

Solution:
Re-enter the address in the client application.

Device address <address> is not supported by model <model name>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is valid for the communications protocol
but not supported by the target device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application. Verify also that the selected
model name for the device is correct.

Device address <address> is read only.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has a requested access mode that is not compatible with what the
device supports for that address.

Solution:
Change the access mode in the client application.

Missing address
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has no length.

Solution:
Re-enter the address in the client application.

Device Status Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

All channels are subscribed to a virtual network, stopping unsolicited communication.
Device <device name> is not responding.
Failed to resolve host <host name> on device <device name>.
Modbus TCP/IP Ethernet channel <channel name> is in a virtual network, all devices reverted to
use one socket per device.
Starting unsolicited communication using TCP protocol through port <port>.

www. kepware.com

39

Modbus Ethernet Driver Help

Socket error <code> occurred on <device name>. Operation <operation name> failed because
<reason>.
Unable to bind to adapter: <network adapter name>. Connect failed.
Unable to create a socket connection for device <device name>.
Unable to write to <address> on device <device name>.
Unable to write to address <address> on device <device>: Device responded with exception code
<code>.

All channels are subscribed to a virtual network, stopping unsolicited
communication.
Error Type:
Information

Possible Cause:
Channel Serialization was enabled for all Modbus Ethernet channels.

Solution:
To enable unsolicited communications, add at least one channel that is not in a virtual network.

Note:
Unsolicited communications will be disabled when all Modbus Ethernet channels are in a virtual network.

Starting unsolicited communication using TCP protocol through port <port>.
Error Type:
Information

Possible Cause:
Channel serialization has been disabled on at least one channel.

Solution:
N/A

Device <device name> is not responding.
Error Type:
Serious

Possible Cause:

1. The connection between the device and the Host PC is broken.

2. The communication parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect Network ID.

4. The response from the device took longer to receive than the amount of time specified in the "Request
Timeout" device setting.

Solution:

1. Verify the cabling between the PC and the device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the Network ID given to the named device matches that of the actual device.

4. Increase the Request Timeout setting so that the entire response can be handled.

Failed to resolve host <host name> on device <device name>.
Error Type:
Fatal

Possible Cause:

www. kepware.com

40

Modbus Ethernet Driver Help

The device is configured to use a DNS host name rather than an IP address. The host name cannot be resolved by
the server to an IP address.

Solution:
Verify that the device is online and registered with the domain.

Modbus TCP/IP Ethernet channel <channel name> is in a virtual network, all
devices reverted to use one socket per device.
Error Type:
Information

Possible Cause:
The channel that contains the device was configured to use channel serialization.

Solution:
If more than one socket is required per device, disable channel serialization.

Note:
Channels/devices that are in a virtual network can only be configured to use one socket per device.

Socket error <code> occurred on <device name>. Operation <operation
name> failed because <reason>.
Error Type:
Warning

Possible Cause:
Communication with <device name> failed during the specified socket operation. Possible operations include:

l Connect
l Wait for send data (test socket before sending)
l Send
l Wait for receive data (test socket before receiving)
l Receive

Both error <code> and detailed <reason> are provided by the operating system. This error is posted when the
<device name> is in an error state (_Error is true).

Solution:
Follow the guidance in the <reason>, which details why the error occurred and suggests a remedy when
appropriate.

Unable to bind to adapter: <network adapter name>. Connect failed.
Error Type:
Warning

Possible Cause:
Since the specified network adapter cannot be located in the system device list, it cannot be bound to for
communications. This usually occurs when a project is moved from one PC to another (and when the project
specifies a network adapter rather than using the default). The server falls back to the default adapter.

Solution:
Change the Network Adapter property to Default (or select a new adapter) and then save the project and retry.

Unable to create a socket connection for device <device name>.
Error Type:
Warning

Possible Cause:
The server was unable to establish a TCP/IP socket connection to the specified device. It will continue to attempt
connection.

www. kepware.com

41

Modbus Ethernet Driver Help

Solution:

1. Verify that the device is online.

2. Verify that the device IP is within the subnet of the IP to which the server is bound. Alternatively, verify
that a valid gateway is available that allows a connection the other network.

Unable to write to <address> on device <device name>.
Error Type:
Serious

Possible Cause:

1. The named device may not be connected to the network.

2. The named device may have been assigned an incorrect network ID.

3. The named device is not responding to write requests.

4. The address does not exist in the PLC.

Solution:

1. Check the PLC network connections.

2. Verify the network ID given to the named device matches that of the actual device.

Unable to write to address <address> on device <device>: Device responded
with exception code <code>.
Error Type:
Warning

Possible Cause:
SeeModbus Exception Codes for a description of the exception code.

Solution:
SeeModbus Exception Codes.

Device Specific Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Bad address in block [x to y] on device <device name>.
Bad array spanning [<address> to <address>] on device <device name>.
Bad received length [x to y] on device <device name>.
Cannot change device ID <device ID> from <current mode> to <new mode> with a client
connected.
Failure to initiate winsock.dll.
Failure to start unsolicited communications.
Unsolicited mailbox access for undefined device (IP: <device IP>.<device index>)... Closing
socket.
Unsolicited mailbox memory allocation error (IP: <device IP>)
Unsolicited mailbox unsupported request received (IP: <device IP>).

Bad address in block [x to y] on device <device name>.
Error Type:
Fatal addresses falling in this block.

Possible Cause:
This error is reported when the driver attempts to read a location in a PLC that does not exist. For example, in a
PLC that only has holding registers 40001 to 41400, requesting address 41405 would generate this error. Once

www. kepware.com

42

Modbus Ethernet Driver Help

this error is generated, the driver will not request the specified block of data from the PLC again. Any other
addresses being requested that are in this same block will also go invalid.

Solution:
The client application should be modified to ask for addresses within the range of the device.

See Also:
Error Handling

Bad array spanning [<address> to <address>] on device <device name>.
Error Type:
Fatal

Possible Cause:
An array of addresses was defined that spans past the end of the address space.

Solution:
Verify the size of the device's memory space and then redefine the array length accordingly.

Bad received length [x to y] on device <device name>.
Error Type:
Fatal addresses falling in this block.

Possible Cause:
The driver attempted to read a block of memory in the PLC. The PLC responded with no error, but did not provide
the driver with the requested block size of data.

Solution:
Ensure that the range of memory exists for the PLC.

Cannot change device ID <device ID> from <current mode> to <new mode>
with a client connected.
Error Type:
Warning

Possible Cause:
When a client is connected, the Device ID can only be changed if it does not result in change of mode (master to
slave or slave to master) of the device. The mode is changed by changing the loopback* or local IP address to a
different IP address and vice versa. The loopback address and the local IP address (of the PC running the driver)
indicates slave (unsolicited) mode, and any other IP address indicates master mode of the device.

*Any address in the format 127.xxx.xxx.xxx, where xxx is in the range 0-255, is the loopback address.

Solution:
To change the Device ID that results in change of mode (master to slave OR slave to master), disconnect all the
clients.

Note:
For this driver, the terms Slave and Unsolicited are used interchangeably.

Failure to initiate winsock.dll.
Error Type:
Fatal

Possible Cause:
Could not negotiate with the operating systems winsock 1.1 functionality.

Solution:
Verify that the winsock.dll is properly installed on the system.

www. kepware.com

43

Modbus Ethernet Driver Help

Failure to start unsolicited communications.
Error Type:
Fatal

Possible Cause:
The driver was not able to create a listen socket for unsolicited communications.

Solution:

1. Verify that the port defined at the driver's channel level is not being used by another application on the
system.

2. Call a Technical Support representative.

Note:
For this driver, the terms Slave and Unsolicited are used interchangeably.

Unsolicited mailbox access for undefined device (IP: <device IP>.<device
index>)... Closing socket.
Error Type:
Warning

Possible Cause:
A device with the specified IP address attempted to send a mailbox message to the server. The message did not
pass validation, due to one of the following reasons:

1. There is no device with that IP configured in the Mailbox Project.

2. Although a device is configured, there are no clients requesting data from it.

Solution:
For the server to accept mailbox messages, the specified Device IP must be configured in the project. At least one
data item from the device must be requested by a client.

Unsolicited mailbox memory allocation error (IP: <device IP>).
Error Type:
Fatal

Possible Cause:
An attempt made to allocate memory for the specified IP address failed.

Solution:
The server was unable to increase the working memory set for additional Mapped Memory addresses. This will
occur if there is no more RAM or virtual RAM available for the server to use. To check for available memory, use
the Task Manager. Update the machine to accommodate the demands of the project, if necessary.

Unsolicited mailbox unsupported request received (IP: <device IP>).
Error Type:
Warning

Possible Cause:
An unsupported request was received from the specified Device IP. The format of the device's request was invalid
and not within Modbus specification.

Solution:
Verify that the devices configured to send Mailbox data are sending the correct requests.

Automatic Tag Database Generation Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Description truncated for import file record number <record>.
Error parsing import file record number <record>, field <field>.

www. kepware.com

44

Modbus Ethernet Driver Help

File exception encountered during tag import.
Imported tag name <tag name> is invalid. Name changed to <tag name>.
Tag <tag name> could not be imported because data type <data type> is not supported.
Tag import failed due to low memory resources.

Description truncated for import file record number <record>.
Error Type:
Warning

Possible Cause:
The tag description given in specified record is too long.

Solution:
The driver will truncate the description as needed. To prevent this error in the future, edit the variable import file
to change the description (if possible).

Error parsing import file record number <record>, field <field>.
Error Type:
Serious

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or invalid.

Solution:
Edit the variable import file to change the offending field if possible.

File exception encountered during tag import.
Error Type:
Serious

Possible Cause:
The variable import file could not be read.

Solution:
Regenerate the variable import file.

Imported tag name <tag name> is invalid. Name changed to <tag name>.
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Solution:
The driver will construct a valid name based on the one from the variable import file. To prevent this error in the
future and to maintain name consistency, change the name of the exported variable if possible.

Tag <tag name> could not be imported because data type <data type> is not
supported.
Error Type:
Warning

Possible Cause:
The data type specified in the variable import file is not one of the types supported by this driver.

Solution:
If possible, change the data type specified in variable import file to one of the supported types. If the variable is
for a structure, manually edit the file to define each tag required for the structure. Alternatively, manually
configure the required tags in the OPC server.

www. kepware.com

45

Modbus Ethernet Driver Help

See Also:
Exporting Variables from Concept

Tag import failed due to low memory resources.
Error Type:
Serious

Possible Cause:
The driver could not allocate memory required to process variable import file.

Solution:
Shut down all unnecessary applications and retry.

www. kepware.com

46

Modbus Ethernet Driver Help

Modbus Exception Codes
The following data is from Modbus Application Protocol Specifications documentation.

Code
Dec/Hex

Name Meaning

01/0x01 ILLEGAL
FUNCTION

The function code received in the query is not an allowable action for the server
(or slave). This may be because the function code is only applicable to newer
devices, and was not implemented in the unit selected. It could also indicate
that the server (or slave) is in the wrong state to process a request of this type;
for example, because it is unconfigured and is being asked to return register
values.

02/0x02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the
server (or slave). More specifically, the combination of reference number and
transfer length is invalid. For a controller with 100 registers, a request with
offset 96 and length 4 would succeed, a request with offset 96 and length 5
will generate exception 02.

03/0x03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for server (or
slave). This indicates a fault in the structure of the remainder of a complex
request, such as that the implied length is incorrect. It specifically does NOT
mean that a data item submitted for storage in a register has a value outside
the expectation of the application program, since the Modbus protocol is
unaware of the significance of any particular value of any particular register.

04/0x04 SLAVE DEVICE
FAILURE

An unrecoverable error occurred while the server (or slave) was attempting to
perform the requested action.

05/0x05 ACKNOWLEDGE The slave has accepted the request and is processing it, but a long duration of
time will be required to do so. This response is returned to prevent a timeout
error from occurring in the master. The master can next issue a Poll Program
Complete message to determine if processing is completed.

06/0x06 SLAVE DEVICE
BUSY

The slave is engaged in processing a long duration program command. The
master should retransmit the message later when the slave is free.

07/0x07 NEGATIVE
ACKNOWLEDGE

The slave cannot perform the program function received in the query. This
code is returned for an unsuccessful programming request using function
code 13 or 14 decimal. The master should request diagnostic or error
information from the slave.

08/0x08 MEMORY PARITY
ERROR

The slave attempted to read extended memory but detected a parity error in the
memory. The master can retry the request, but service may be required on the
slave device.

10/0x0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways indicates that the gateway was
unable to allocate an internal communication path from the input port to the
output port for processing the request. This usually means that the gateway is
misconfigured or overloaded.

11/0x0B GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways indicates that no response was
obtained from the target device. This usually means that the device is not
present on the network.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

www. kepware.com

47

Modbus Ethernet Driver Help

Index

A

Address <address> is out of range for the specified device or register 38
Address Descriptions 25
Address Validation 38
All channels are subscribed to a virtual network, stopping unsolicited communication. 40
Applicom Addressing 25
Array size is out of range for address <address>. 38
Array support is not available for the specified address: <address>. 38
Automatic Tag Database Generation 18
Automatic Tag Database Generation Messages 44

B

Bad address in block [x to y] on device <device name>. 42
Bad array spanning [<address> to <address>] on device <device name>. 43
Bad received length [x to y] on device <device name>. 43
Block Sizes 13

C

Cable Diagrams 17
Cannot change device ID <device ID> from <current mode> to <new mode> with a client connected. 43
CEG Addressing 32
Channel Setup 5
Communications Timeout 16

D

Data Type <type> is not valid for device address <address>. 38
Data Types Description 24
Description truncated for import file record number <record>. 45
Device <device name> is not responding. 40
Device address <address> contains a syntax error. 39
Device address <address> is not supported by model <model name>. 39
Device address <address> is read only. 39
Device ID (PLC Network Address) 8
Device Setup 7
Device Specific Messages 42
Device Status Messages 39
Driver System Tag Addressing 25

E

Error Descriptions 38
Error Handling 15
Error parsing import file record number <record>, field <field>. 45
Ethernet 9
Ethernet to Modbus Plus Bridge 7
Exporting Variables from Concept 19
Exporting Variables from ProWORX 21

www. kepware.com

48

Modbus Ethernet Driver Help

F

Failed to resolve host <host name> on device <device name>. 40
Failure to initiate winsock.dll. 43
Failure to start unsolicited communications. 44
File exception encountered during tag import. 45
Fluenta 7
Fluenta Addressing 32
Function Codes Description 25

G

Generic Modbus 25

H

Help Contents 4

I

Imported tag name <tag name> is invalid. Name changed to <tag name>. 45
Importing from Custom Applications 18
Instromet 7
Instromet Addressing 32

M

Mailbox 7
Mailbox Addressing 32
Missing Address 39
Modbus Addressing 33
Modbus Exception Codes 47
Modbus Master 7
Modbus Master & Modbus Unsolicited Considerations 17
Modbus TCP/IP Ethernet channel <channel name> is in a virtual network, all devices reverted to use one

socket per device. 41
Modbus Unsolicited 7

O

Optimizing Modbus Ethernet Communications 23
Overview 4

P

Port Tag 25

R

Roxar 8

www. kepware.com

49

Modbus Ethernet Driver Help

Roxar Addressing 35

S

Settings 10
Socket error <code> occurred on <device name>. Operation <operation name> failed because <reason>. 41
Socket Usage 5
Starting unsolicited communication using TCP protocol through port <port>. 40
Statistics Items 36

T

Tag <tag name> could not be imported because data type <data type> is not supported. 45
Tag import failed due to low memory resources. 46
TSX Premium 30
TSX Quantum 28

U

Unable to bind to adapter: <network adapter name>. Connect failed. 41
Unable to create a socket connection for Device <device name>. 41
Unable to write to <address> on device <device name>. 42
Unable to write to address <address> on device <device>: Device responded with exception code

<code>. 42
Unsolicited 16
Unsolicited mailbox access for undefined device (IP: <device IP>.<device index>)... Closing socket. 44
Unsolicited mailbox memory allocation error (IP: <device IP>). 44
Unsolicited mailbox unsupported request received (IP: <device IP>). 44

V

Variable Import Settings 14

www. kepware.com

50

	Table of Contents
	Modbus Ethernet Driver Help
	Overview

	Channel Setup
	Device Setup
	Ethernet
	Settings
	Block Sizes
	Variable Import Settings
	Error Handling
	Unsolicited
	Cable Diagrams
	Modbus Master & Modbus Unsolicited Considerations

	Automatic Tag Database Generation
	Importing from Custom Applications
	Exporting Variables from Concept
	Exporting Variables from ProWORX

	Optimizing Modbus Ethernet Communications
	Data Types Description
	Address Descriptions
	Driver System Tag Addressing
	Function Codes Description
	Applicom Addressing
	Generic Modbus

	TSX Quantum
	TSX Premium
	CEG Addressing
	Fluenta Addressing
	Instromet Addressing
	Mailbox Addressing
	Modbus Addressing
	Roxar Addressing
	Statistics Items

	Error Descriptions
	Address Validation
	Address <address> is out of range for the specified device or register.
	Array size is out of range for address <address>.
	Array support is not available for the specified address: <address>.
	Data Type <type> is not valid for device address <address>.
	Device address <address> contains a syntax error.
	Device address <address> is not supported by model <model name>.
	Device address <address> is read only.
	Missing address

	Device Status Messages
	All channels are subscribed to a virtual network, stopping unsolicited commun...
	Starting unsolicited communication using TCP protocol through port <port>.
	Device <device name> is not responding.
	Failed to resolve host <host name> on device <device name>.
	Modbus TCP/IP Ethernet channel <channel name> is in a virtual network, all de...
	Socket error <code> occurred on <device name>. Operation <operation name> fai...
	Unable to bind to adapter: <network adapter name>. Connect failed.
	Unable to create a socket connection for device <device name>.
	Unable to write to <address> on device <device name>.
	Unable to write to address <address> on device <device>: Device responded wit...

	Device Specific Messages
	Bad address in block [x to y] on device <device name>.
	Bad array spanning [<address> to <address>] on device <device name>.
	Bad received length [x to y] on device <device name>.
	Cannot change device ID <device ID> from <current mode> to <new mode> with a ...
	Failure to initiate winsock.dll.
	Failure to start unsolicited communications.
	Unsolicited mailbox access for undefined device (IP: <device IP>.<device inde...
	Unsolicited mailbox memory allocation error (IP: <device IP>).
	Unsolicited mailbox unsupported request received (IP: <device IP>).

	Automatic Tag Database Generation Messages
	Description truncated for import file record number <record>.
	Error parsing import file record number <record>, field <field>.
	File exception encountered during tag import.
	Imported tag name <tag name> is invalid. Name changed to <tag name>.
	Tag <tag name> could not be imported because data type <data type> is not sup...
	Tag import failed due to low memory resources.

	Modbus Exception Codes

	Index

