
Modbus Serial Driver Help

© 2015 Kepware, Inc.

Modbus Serial Driver Help

Table of Contents
Table of Contents 2

Modbus Serial Driver Help 4

Overview 4

Channel Setup 5

Device Setup 6

Cable Diagram 7

Modem Setup 7

Settings 8

Block Sizes 11

Variable Import Settings 12

Framing 13

Error Handling 15

Automatic Tag Database Generation 16

Exporting Variables from Concept 16

Exporting Variables from ProWORX 18

Data Types Description 20

Address Descriptions 21

Modbus Addressing 21

Magnetek GPD 515 Drive Addressing 23

Elliott Flow Computer Addressing 24

Daniels S500 Flow Computer Addressing 24

Dynamic Fluid Meter Addressing 25

Omni Flow Computer Addressing 26

Omni Custom Packets 28

Omni Raw Data Archive 30

Omni Text Reports 34

Omni Text Archive 36

Function Codes Description 37

Statistics Items 38

Error Descriptions 40

Address Validation 40

Address <address> is out of range for the specified device or register. 40

Array size is out of range for address <address>. 40

Array support is not available for the specified address: <address>. 40

Data Type <type> is not valid for device address <address>. 41

Device address <address> contains a syntax error. 41

Device address <address> is not supported by model <model name>. 41

Device address <address> is read only. 41

Missing address 41

Received block length of <received length> does not match expected length of <expected length> for
address <address> on device <device>. 41

www. kepware.com

2

Modbus Serial Driver Help

Serial Communications 42

Communications error on <channel name> [<error mask>]. 42

COMn does not exist. 42

COMn is in use by another application. 42

Error opening COMn. 43

Unable to set comm parameters on COMn. 43

Device Status Messages 43

Device <device name> is not responding. 43

Unable to write to address <address> on device <device>: Device responded with exception code
<code>. 44

Unable to write to <address> on device <device name>. 44

Write failed for <tag name> on device <device name>. Maximum path length of <number> exceeded. 44

Modbus Serial Specific Messages 44

Bad address in block [<start address> to <end address>] on device <device name>. 44

Bad array spanning [<address> to <address>] on device <device>. 45

Could not read Omni text buffer due to memory allocation problem. 45

Could not read Omni text report <address> on device <device name> due to packet limit. 45

Error writing Omni text data to file for <tag name> on device <device name> because <reason>. 46

No Omni text archive data available in specified date range on device <device name>. 46

Omni text output file specified for <tag name> on device <device name> could not be opened because
<reason>. 46

Write to Omni text report <address> on device <device name> truncated. 46

Automatic Tag Database Generation Messages 46

Description truncated for import file record number <record>. 47

Error parsing import file record number <record>, field <field>. 47

File exception encountered during tag import. 47

Imported tag name <tag name> is invalid. Name changed to <tag name>. 47

Tag <tag name> could not be imported because data type <data type> is not supported. 47

Tag import failed due to low memory resources. 48

Modbus Exception Codes 48

Index 49

www. kepware.com

3

Modbus Serial Driver Help

Modbus Serial Driver Help
Help version 1.055

CONTENTS

Overview
What is the Modbus Serial driver?

Channel Setup
How do I configure channels for use with this driver?

Device Setup
How do I configure a device for use with this driver?

Automatic Tag Database Generation
How can I easily configure tags for the Modbus Serial driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location on a Modbus device?

Error Descriptions
What error messages are produced by the Modbus Serial driver?

Overview
The Modbus Serial driver provides a reliable way to connect Modbus serial devices to OPC Client applications,
including HMI, SCADA, Historian, MES, ERP, and countless custom applications. It is intended for use with serial
devices that support the Modbus RTU protocol. The Modbus Serial driver has been developed to support a wide
range of Modbus RTU compatible devices.

www. kepware.com

4

Modbus Serial Driver Help

Channel Setup
Communication Serialization
The Modbus Serial driver supports communication serialization, which specifies whether data transmissions
should be limited to one channel at a time. For more information, refer to "Channel Properties - Advanced" in the
server help file.

www. kepware.com

5

Modbus Serial Driver Help

Device Setup
Supported Devices
Modbus compatible devices
Elliott Flow Computer
Magnetek GPD 515 Drive
Omni Flow Computer
Daniel S500 Flow Computer
Dynamic Fluid Meter (DFM) SFC3
TSXCUSBMBP USB Adapter

Communication Protocol
Modbus RTU Protocol

Supported Communication Parameters
Baud Rate: 1200, 2400, 9600, and 19200
Parity: Odd, Even, and None
Data Bits: 8
Stop Bits: 1 and 2

Note: Not all of the listed configurations may be supported in every device.

Maximum Number of Channels and Devices
The maximum number of channels supported by this driver is 256. The maximum number of devices supported
is 255.

Ethernet Encapsulation
This driver supports Ethernet Encapsulation, which allows the driver to communicate with serial devices
attached to an Ethernet network using a terminal server (such as the Lantronix DR1). It may be enabled through
the Communications dialog in Channel Properties. For more information, refer to the main OPC server's help file.

Device ID (PLC Network Address)
Modbus serial devices are assigned device IDs in the range 0 to 255. When using Modbus Device ID 0, the driver
will send only broadcast Write messages to remote stations. When configuring a device under the channel,
setting the Device ID to 0 will place that device in broadcast mode. Only Writes will occur from this device. Reads
from the broadcast device will always return zero. All other Device IDs (1-255) will read and write data to/from
the remote Modbus RTU device.

Flow Control
When using an RS232/RS485 converter, the type of flow control that is required will depend on the converter's
needs. Some do not require any flow control whereas others require RTS flow. Consult the converter's
documentation to determine its flow requirements. An RS485 converter that provides automatic flow control is
recommended.

Note:When using the manufacturer's supplied communications cable, it is sometimes necessary to choose a
flow control setting of RTS or RTS Always under the Channel Properties.

Manual Flow Control
The Modbus RTU driver supports RTS Manual flow control, which is used to configure the driver for operation
with radio modems that require special RTS timing characteristics. For more information, refer to the OPC
server's help documentation.

www. kepware.com

6

Modbus Serial Driver Help

Cable Diagram
For recommended wiring and cable diagrams, refer to the Modbus device manufacturer's documentation. The
Modicon 984 Modbus Controller cable diagram is shown below.

Modem Setup
This driver supports modem functionality. For more information, please refer to the topic "Modem Support" in the
OPC Server Help documentation.

www. kepware.com

7

Modbus Serial Driver Help

Settings
----- Data Access Group -----

Zero vs. One Based Addressing
If the address numbering convention for the device starts at one as opposed to zero, it can be specified when
defining the parameters for the device. By default, user entered addresses will have one subtracted from them
when frames are constructed to communicate with a Modbus device. If the device doesn't follow this convention,
then the Use zero based addressing check box should be unchecked in Device Properties. For information on
the appropriate application to obtain information on setting Device Properties, refer to the online help
documentation. The default behavior follows Modicon PLCs' conventions.

Zero vs. One Based Bit Addressing within Registers
Memory types that allow bits within Words can be referenced as a Boolean. The addressing notation for doing this
is as follows:

<address>.<bit>

where <bit> represents the bit number within the word.

Zero Based Bit Addressing within registers provides two ways of addressing a bit within a given word: Zero
Based and One Based. Zero Based Bit addressing within registers means the first bit begins at 0. One Based Bit
addressing means that the first bit begins at 1.

Zero Based Bit Addressing within Registers (Default Setting / Checked)

Data Type Bit Range
Word Bits 0–15

One Based Bit Addressing within Registers (Unchecked)

Data Type Bit Range
Word Bits 1–16

Holding Register Bit Mask Writes
When writing to a bit location within a holding register, the driver should only modify the bit of interest. Some
devices support a special command to manipulate a single bit within a register (Function code hex 0x16 or
decimal 22). If the device does not support this feature, the driver will need to perform a Read/Modify/Write
operation to ensure that only the single bit is changed.

Check this box if the device supports holding register bit access. The default setting is unchecked. If this setting
is selected, then the driver will use function code 0x16, irrespective of the setting for Use Modbus function 06
for single register writes. If this setting is not selected, then the driver will use either function code 0x06 or
0x10 depending on the selection for 'Use Modbus function 06 for single register writes.'

Note:When Modbus byte order is deselected, the byte order of the masks sent in the command will be Intel byte
order.

Use Modbus Function 06 or 16
The Modbus driver has the option of using two Modbus protocol functions to write holding register data to the
target device. In most cases, the driver switches between these two functions based on the number of registers
being written. When writing a single 16-bit register, the driver will generally use the Modbus function 06. When
writing a 32-bit value into two registers, the driver will use Modbus function 16. For the standard Modicon PLC,
the use of either of these functions is not a problem. There are, however, a large number of Third-Party devices
that have implemented the Modbus protocol. Many of these devices support only the use of Modbus function 16 to
write to Holding registers, regardless of the number of registers to be written.

The Use Modbus function 06 selection is used to force the driver to use only Modbus function 16 if needed. By
default, this selection is checked which allows the driver to operate as it has historically, switching between 06
and 16 as needed. If a device requires all writes be done using only Modbus function 16, uncheck this selection.

Note: For bit within word writes, the Holding Register Bit Mask Writes is not selected, then depending on the
selection of this property either function code 0x06 or 0x10 will be used for bit within word writes. When
Holding Register Bit Mask Writes is selected, then function code 0x16 is used no matter what the selection

www. kepware.com

8

Modbus Serial Driver Help

for this property. However, if Holding Register Bit Mask Writes). The Use Modbus Function 06 property takes
precedence over this property.

Use Modbus Function 05 or 15
The Modbus driver has the option of using two Modbus protocol functions to write Output coil data to the target
device. In most cases the driver switches between these two functions based on the number of coils being
written. When writing a single coil, the driver will use the Modbus function 05. When writing an array of coils,
the driver will use Modbus function 15. For the standard Modicon PLC, the use of either of these functions is not a
problem. There are, however, a large number of Third-Party devices that have implemented the Modbus protocol.
Many of these devices support only the use of Modbus function 15 to write to output coils regardless of the
number of coils to be written.

The Use Modbus function 05 selection is used to force the driver to use only Modbus function 15 if needed.
The default setting is checked. This allows the driver to operate as it has historically, switching between 05 and
15 as needed. If a device requires all writes be done using only Modbus function 15, however, this selection
should be unchecked.

----- Data Encoding Group -----

Modbus Byte Order
This selection allows users to change the driver's byte order from the default Modbus byte ordering to Intel byte
ordering. The default setting is checked, which is the normal setting for Modbus compatible devices. If the device
uses Intel byte ordering, deselecting this selection will enable the Modbus driver to properly read Intel formatted
data.

Note: This setting does not apply to the Omni model. It always uses Modbus byte order.

First Word Low in 32-Bit Data Types
Two consecutive registers' addresses in a Modbus device are used for 32-bit data types. Users can specify
whether the driver should assume the first word is the low or the high word of the 32-bit value. The default, first
word low, follows the convention of the Modicon Modsoft programming software.

Note: This setting does not apply to the Omni model. It always uses Modbus byte order.

First DWord Low in 64-Bit Data Types
Four consecutive registers' addresses in a Modbus device are used for 64-bit data types. Users can specify
whether the driver should assume the first DWord is the low or the high DWord of the 64-bit value. The default
setting, first DWord low, follows the default convention of 32-bit data types.

Note: This setting does not apply to the Omni model, which always uses Modbus byte order.

Use Modicon Bit Ordering
When checked, the driver will reverse the bit order on reads and writes to registers to follow the convention of
the Modicon Modsoft programming software. For example, when enabled, a write to address 40001.0/1 will
affect bit 15/16 in the device. The default setting is disabled (unchecked).

Note: For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits. This depends on
whether the driver is set at Zero Based or One Based Bit Addressing within registers.

MSB = Most Significant Bit
LSB = Least Significant Bit

Use Modicon Bit Ordering Checked

MSB LSB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Use Modicon Bit Ordering Unchecked (Default Setting)

MSB LSB
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Treat Longs as Double Precision Unsigned Decimal
When checked, the driver encodes/decodes Long and DWORD data types as values that range from 0 to
99999999. This format specifies that each word represents a value between 0 and 9999.

www. kepware.com

9

Modbus Serial Driver Help

Values read above the specified range are not clamped, but the behavior is undefined. All read values are
decoded using the following formula:
[Read Value] = HighWord * 10000 + LowWord.

Written values greater than 99999999 are clamped to the maximum value. All written values are encoded using
the following formula:
Raw Data = [Written Value]/10000 + [Written Value] % 10000.

Data Encoding Options Details
Description of the data encoding options' usage is as follows:

l Use default Modbus byte order option sets the data encoding of each register/16-bit value.
l First word low in 32-bit data types option sets the data encoding of each 32-bit value and each double
word of a 64-bit value.

l First DWord low in 64-bit data types option sets the data encoding of each 64-bit value.

Data Types Use Default Modbus
Byte Order Applicable

First Word Low in 32-Bit
Data Types Applicable

First DWord Low in 64-Bit
Data Types Applicable

Word, Short,
BCD

Yes No No

Float, DWord,
Long, LBCD

Yes Yes No

Double Yes Yes Yes

If needed, use the following information and the particular device's documentation to determine the correct
settings of the Data Encoding options. The default settings are correct for the majority of Modbus devices.

Data Encoding Group
Option Data Encoding

Use Default Modbus Byte
Order Checked

High Byte (15..8) Low Byte (7..0)

Use Default Modbus Byte
Order Unchecked

Low Byte (7..0) High Byte (15..8)

First Word Low in 32-Bit
Data Types Unchecked

High Word (31..16) High Word(63..48)
of Double Word in 64-bit data types.

Low Word (15..0) Low Word (47..32) of
Double Word in 64-bit data types.

First Word Low in 32-Bit
Data Types Checked

Low Word (15..0) Low Word (47..32)
of Double Word in 64-bit data types.

High Word (31..16) High Word
(63..48) of Double Word in 64-bit data
types.

First DWord Low in 64-Bit
Data Types Unchecked

High Double Word (63..32) Low Double Word (31..0)

First DWord Low in 64-Bit
Data Types Checked

Low Double Word (31..0) High Double Word (63..32)

www. kepware.com

10

Modbus Serial Driver Help

Block Sizes

Descriptions of the parameters are as follows:

l Coils (8-2000 in multiples of 8): This parameter specifies the output and input coils. Coils can be
read from 8 to 2000 points (bits) at a time. A higher block size means more points will be read from the
device in a single request. The block size can be reduced to read data from non-contiguous locations
within the device. The default setting is 32.

l Registers (1-125): This parameter specifies the internal and holding registers. Registers can be read
from 1 to 125 locations (words) at a time. A higher block size means more register values will be read
from the device in a single request. The block size can be reduced to read data from non-contiguous
locations within the device. The default setting is 32.

Caution: If the Register Block sizes value is set above 120 and a 32 or 64-bit data type is used for any
tag, then a "Bad address in block" error could occur. To prevent this error, decrease the block size value
to 120.

l Perform Block Read on Strings:When checked, this option will block read string tags (which are
normally read individually). String tags will also be grouped together depending on the selected block
size. Block reads can only be performed for Modbus model string tags. The default setting is unchecked.

www. kepware.com

11

Modbus Serial Driver Help

Variable Import Settings
The Variable Import Settings parameters specify the location of the variable import file that will be used when
Automatic Tag Database Generation is enabled.

Descriptions of the parameters are as follows:

l Variable Import File: This parameter is used to browse to the exact location of the Concept or ProWORX
variable import file that the driver will use during Automatic Tag Database Generation.

l Include Descriptions:When checked, imported tag descriptions will be used if present in the file.

Note: For more information on configuring the Automatic Tag Database Generation feature (and how to create a
variable import file), refer to Automatic Tag Database Generation.

www. kepware.com

12

Modbus Serial Driver Help

Framing
Some terminal server devices add additional data to Modbus frames; as such, the Framing parameters can be
used to configure the driver to ignore the additional bytes in response messages.

Descriptions of the parameters are as follows:

l Use Modbus TCP Framing: When checked, this parameter communicates with native Modbus TCP
devices using Ethernet Encapsulation.

l Leading bytes: This parameter specifies the number of bytes to be attached to the beginning of Modbus
responses. Values may range from 0 to 8.

l Trailing bytes: This parameter specifies the number of bytes to be attached to the end of Modbus
responses. Values may range from 0 to 8.

Using Ethernet Encapsulation
Ethernet Encapsulation must be enabled for Framing to be available; otherwise, the selection Use Modbus TCP
Framingwill be disabled. For information on enabling Ethernet Encapsulation, refer to the instructions below.

1. To start, open the device's Channel Properties.

2. In the Communications tab, select Use Ethernet Encapsulation. This will enable Ethernet
Encapsulation for the channel. Then, clickOK.

3. Next, open the device's Device Properties. Descriptions of the parameters are as follows:

l IP Address: This parameter specifies the device's IP address. The default setting is
255.255.255.255.

l Port Number: This parameter specifies the port number. 502 is usually entered for Modbus
TCP devices.

www. kepware.com

13

Modbus Serial Driver Help

l Protocol: This parameter specifies the protocol. The default setting is TCP/IP.

4. Once finished, clickOK.

See Also: Device Setup

www. kepware.com

14

Modbus Serial Driver Help

Error Handling
The Error Handling parameters determine how to deal with errors from the device.

Descriptions of the parameters are as follows:

l Deactivate Tags on Illegal Address Exception: When checked, the driver will stop polling for a block
of data if the device returns Modbus exception code 2 (illegal address) or 3 (illegal data, such as number
of points) in response to a read of that block. When unchecked, the driver will continue to poll that data
block. The default setting is checked.

l Reject Repeated Messages:When checked, the driver will expect repeated messages. When
unchecked, the driver will interpret a repeated message as an invalid response and will retry the request.
The default setting is unchecked.

Note: Somemessage-relay equipment will echo Modbus requests back to the driver.

www. kepware.com

15

Modbus Serial Driver Help

Automatic Tag Database Generation
The Modbus Serial driver makes use of the OPC server's automatic tag database generation feature, which
enables drivers to automatically create tags that access data points used by the device's ladder program. While it
is sometimes possible to query a device for the information needed to build a tag database, this driver must use a
Variable Import File instead. Variable import files can be generated using the Concept and ProWORX device
programming applications.

Creating the Variable Import File
The import file must be in semicolon delimited Concept .TXT format, which is the default export file format of the
Concept device programming application. The ProWORX programming application can also export variable data in
this format. For application-specific information on creating the variable import file, refer to Exporting
Variables from Concept and Exporting Variables from ProWORX.

OPC Server Configuration
Automatic tag database generation can be customized to fit an application's specific needs. The primary control
options can be set during the Database Creation step of the Device Wizard or later by selecting Device
Properties | Database Creation. For more information, refer to the OPC server's help documentation.

This driver requires additional settings in addition to the basic settings that are common to all drivers that
support automatic tag database generation. The specialized settings include the name and location of the variable
import file, which can be specified during the Variable Import Settings step of the Device Wizard or later by
selecting Device Properties | Variable Import Settings. For more information, refer to Variable Import
Settings.

Operation
Depending on the configuration, tag generation may start automatically when the OPC server project starts or be
initiated manually at some other time. The OPC server's Event Log will show when the tag generation process
started, any errors that occurred while processing the variable import file and when the process completed.

Exporting Variables from Concept
As the ladder program is created, symbolic names for various data points referenced can be defined using the
Variable Editor. Additional symbols and constants that are not used by the ladder program can also be defined.

Note: Though Concept is used to define variable names that begin with an underscore, such names are not
allowed by the OPC server. The driver will modify invalid imported tag names as needed, and inform users of any
such name changes in the server's Event Log.

User defined data types are not currently supported by this driver. Records in the export file containing
references to such types will be ignored. The table below displays the supported simple data types.

www. kepware.com

16

Modbus Serial Driver Help

Concept Data Type Generated Tag Data Type
BOOL Boolean
Byte Word
DINT Long
INT Short
REAL Float
TIME DWord
UDINT DWord
UINT Word
Word Word

Notes:

1. Unlocated variables, which do not correspond to a physical address in the device, will be ignored by the
driver.

2. Comments are allowed and can be included as the generated tag descriptions or not. For more
information, refer to Variable Import Settings.

Exporting Variables from Concept
After the variables have been defined, they must be exported from Concept.

1. Click File | Export. Then, select the Variables: Text delimited format.

2. ClickOK. Next, specify the filter and separator settings.

3. Although any filter setting can be chosen, this driver will only be able to read the exported data if the
default semicolon separator is used. ClickOK to generate the file.

www. kepware.com

17

Modbus Serial Driver Help

Exporting Variables from ProWORX
For ProWORX to export the necessary variable information, the Symbols parameter must be checked. To do so,
click File | Preferences.

Note: As the ladder program is created, symbolic names for the various data points referenced can be defined
using theDocument Editor.

Note: ProWORX does not place many restrictions on variable names. However, the OPC server requires that tag
names consist of only alphanumeric characters and underscores. The first character cannot be an underscore.
The driver will modify invalid imported tag names as needed and inform users of any such name changes in the
server's Event Log.

ProWORX will assign a data type of either BOOL or INT to the exported variables. The driver will create tags of
type Boolean and Short respectively. To generate tags with other data types, users should manually edit the
exported file and use any of the supported Concept data types. For a list of supported types, refer to Exporting
Variables from Concept.

Exporting Variables from ProWORX
Once the variables have been defined, they must be exported from ProWORX.

1. Click File | Utilities | Import/Export.

2. Select Export and the Concept .TXT file format.

3. Descriptors are allowed and may be included as the generated tag descriptions. For more information,
refer to Variable Import Settings.

www. kepware.com

18

Modbus Serial Driver Help

4. ClickOK to generate the file.

www. kepware.com

19

Modbus Serial Driver Help

Data Types Description

Data Type Description
Boolean Single bit
Word Unsigned 16-bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16-bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32-bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32-bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this range.
LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond this range.
String Null terminated ASCII string

Supported on Modbus Model, includes HiLo LoHi byte order selection, 8 Byte and 16 Byte
Omni Flow Computer string data.

Double* 64-bit floating point value

The driver interprets four consecutive registers as a double precision value by making the
last two registers the high DWord and the first two registers the low DWord.

Double Example If register 40001 is specified as a double, bit 0 of register 40001 would be bit 0 of the 64-
bit data type and bit 15 of register 40004 would be bit 63 of the 64-bit data type.

Float* 32-bit floating point value

The driver interprets two consecutive registers as a single precision value by making the
last register the high word and the first register the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would be bit 0 of the 32-bit
data type and bit 15 of register 40002 would be bit 31 of the 32-bit data type.

*The descriptions assume the default first DWord low data handling of 64-bit data types, and first word low data
handling of 32-bit data types.

www. kepware.com

20

Modbus Serial Driver Help

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain specific
address information for the model of interest.

Modbus Addressing
Magnetek GPD 515 Drive Addressing
Elliott Flow Computer Addressing
Daniels S500 Flow Computer Addressing
Dynamic Fluid Meter Addressing
Omni Flow Computer Addressing
Statistics

See Also: Function Codes Description

Modbus Addressing
The default data types for dynamically defined tags are shown in bold. The Function Codes are displayed in
decimal. For more information, refer to Function Codes Description.

5-Digit Addressing vs. 6-Digit Addressing
In Modbus addressing, the first digit of the address specifies the primary table. The remaining digits represent
the device's data item. The maximum value of the data item is a two-byte unsigned integer (65,535). Internally,
this driver requires six digits to represent the entire address table and item. It is important to note that many
Modbus devices may not support the full range of the data item. To avoid confusion when entering an address for
such a device, this driver "pads" the address (adds a digit) according to what was entered in the address field. If
a primary table type is followed by up to 4 digits (example: 4x, 4xx, 4xxx or 4xxxx), the address stays at or pads,
with extra zeroes, to five (5) digits. If a primary table type is followed by five (5) digits (example: 4xxxxx), the
address does not change. Internally, addresses entered as 41, 401, 4001, 40001 or 400001 are all equivalent
representations of an address specifying primary table type 4 and data item 1.

Primary Table Description
0 Output Coils
1 Input Coils
3 Internal Registers
4 Holding Registers

Modbus Addressing in Decimal Format

Address Range Data Type Access* Function
Code

Output Coils 000001-065536 Boolean Read/Write 01, 05,
15

Input Coils 100001-165536 Boolean Read Only 02
Internal Registers 300001-365536

300001-365535
300001-365533

3xxxxx.0/1-3xxxxx.15/16***

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read Only 04

Internal Registers As
String with HiLo Byte
Order

300001.2H-365536.240H

.Bit is string length, range
2 to 240 bytes.

String** Read Only 04

Internal Registers As
String with LoHi Byte
Order

300001.2L-365536.240L

.Bit is string length, range
2 to 240 bytes.

String** Read Only 04

Holding Registers 400001-465536
400001-465535
400001-465533

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read/Write 03, 06,
16

www. kepware.com

21

Modbus Serial Driver Help

Address Range Data Type Access* Function
Code

4xxxxx.0/1-4xxxxx.15/16***
03, 06,
16, 22

Holding Registers As
String with HiLo Byte
Order

400001.2H-465536.240H
.Bit is string length, range
2 to 240 bytes.

String** Read/Write 03, 16

Holding Registers As
String with LoHi Byte
Order

400001.2L-465536.240L
.Bit is string length, range
2 to 240 bytes.

String** Read/Write 03, 16

*All Read/Write addresses may be set as Write Only by prefixing a "W" to the address such as "W40001." This
will prevent the driver from reading the register at the specified address. Any attempts by the client to read a
Write Only tag will result in obtaining the last successful write value to the specified address. If no successful
writes have occurred, the client will receive 0/NULL for numeric/string values for an initial value.

Caution: Setting the Client Access privileges of Write Only tags to Read Only will cause writes to these tags to fail
and the client to always receive 0/NULL for numeric/string values.

**For more information, refer to String Support.
***For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.

Modbus Addressing in Hexadecimal Format

Address Range Data Type Access Function
Code

Output Coils H000001-H0FFFF Boolean Read/Write 01, 05,
15

Input Coils H100001-H1FFFF Boolean Read Only 02
Internal Registers H300001-H310000

H300001-H3FFFF
H300001-H3FFFD

H3xxxxx.0/1-H3xxxxx.F/10*

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read Only 04

Internal Registers As
String with HiLo Byte
Order

H300001.2H-H3FFFF.240H. Bit
is string length, range 2 to 240
bytes.

String** Read Only 04

Internal Registers As
String with LoHi Byte
Order

H300001.2L-H3FFFF.240L. Bit
is string length, range 2 to 240
bytes.

String** Read Only 04

Holding Registers H400001-H410000 H400001-
H4FFFF H400001-H4FFFD
H4xxxxx.0/1-H4xxxxx.F/10*

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read/Write 03, 06,
16

03, 06,
16, 22

Holding Registers As
String with HiLo Byte
Order

H400001.2H-H4FFFF.240H. Bit
is string length, range 2 to 240
bytes.

String** Read/Write 03, 16

Holding Registers As
String with LoHi Byte
Order

H400001.2L-H4FFFF.240L. Bit
is string length, range 2 to 240
bytes.

String** Read/Write 03, 16

*For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.
**For more information, refer to String Support.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using
holding registers for string data, each register will contain two bytes of ASCII data. The order of the ASCII data
within a given register can be selected when the string is defined. The length of the string can be from 2 to 240
bytes and is entered in place of a bit number. The length must be entered as an even number. The byte order is
specified by appending either a "H" or "L" to the address.

www. kepware.com

22

Modbus Serial Driver Help

String Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter
"40200.100H".

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter "40500.78L".

Note: The string's length may be limited by the maximum size of the write request that the device will allow. If,
while utilizing a string tag, an error message of "Unable to write to address <address> on device <device>:
Device responded with exception code 3" is received in the server event window, this means that the device did
not like the string's length. If possible, shorten the string.

Normal Address Examples

1. The 255'th output coil would be addressed as '0255' using decimal addressing or 'H0FF' using
hexadecimal addressing.

2. Some documentation refers to Modbus addresses by function code and location. For instance, function
code 3; location 2000 would be addressed as '42000' or 'H47D0'. The leading '4' represents holding
registers or function code 3.

3. Some documentation refers to Modbus addresses by function code and location. For instance, setting
function code 5 location 100 would be addressed as '0100' or 'H064'. The leading '0' represents output
coils or function code 5. Writing 1 or 0 to this address would set or reset the coil.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean and strings.
Arrays are also supported for input and output coils (Boolean data types). There are twomethods of addressing
an array. The following examples use holding register locations:

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one.

For arrays, rows multiplied by cols cannot exceed the block size that has been assigned to the device for the
register/coil type. For register arrays of 32-bit data types, rows multiplied by cols multiplied by 2 cannot exceed
the block size.

Packed Coil Address Type
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is
available for both input coils and output coils, polled mode only. The only valid data type is Word. The syntax is:

Output coils: 0xxxxx#nn Word Read/Write
Input coils: 1xxxxx#nn Word Read Only

where xxxxx is the address of the first coil (decimal and hex values allowed), and nn is the number of coils to be
packed into an analog value (1-16, decimal only).

The bit order will be such that the start address will be the LSB (least significant bit) of analog value.

Magnetek GPD 515 Drive Addressing
This table provides the general ranges of data available from the Magnetek GPD 515 Drive. For information on
how specific Drive parameters can be accessed using Modbus RTU addressing, refer to the Magnetek Modbus
RTU Technical Manual, part number TM4025. In all cases, the letter H (used to signify Hex addressing) should
precede the desired address. The default data types for dynamically defined tags are shown in boldwhere
appropriate.

Magnetek GPD 515 Addressing Hexadecimal Format
Address Range Data Type Access
Command Registers Bit Level Access H40001-H4000F H4xxxx.0/1-

H4xxxx.F/10*
Word, Short
Boolean

Read/Write

Monitor Registers Bit Level Access H40010-H4001A H4xxxx.0/1-
H4xxxx.F/10*

Word, Short
Boolean

Read Only

Drive Parameter Registers (Monitor Only)
Bit Level Access

H40020-H40097 H4xxxx.0/1-
H4xxxx.F/10*

Word, Short
Boolean

Read Only

www. kepware.com

23

Modbus Serial Driver Help

Address Range Data Type Access
Drive Parameter Registers Bit Level Access H40100-H4050D H4xxxx.0/1-

H4xxxx.F/10*
Word, Short
Boolean

Read/Write

Special Registers H4FFDD ACCEPT H4FFFD ENTER Word, Short Write Only

*For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.

Example
To access the driver's Operation Status, address 02BH, enter the following address:
H4002B

Note: When adding a Magnetek Device to the OPC Server project, users must make sure that the setting "Use
Zero Based Addressing" is not checked. If this parameter is not set correctly, the Modbus RTU driver will offset all
of the Magnetek addresses by 1.

Array Support
Arrays are supported for holding register locations for all data types except Boolean. There are twomethods of
addressing an array. The following examples use holding register locations:

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one.

Rows multiplied by cols cannot exceed the block size that has been assigned to the device for the register type.

Elliott Flow Computer Addressing
The default data types for dynamically defined tags are shown in boldwhere appropriate.

Address Range Data Type Access
Output Coils 000001-065536 Boolean Read/Write
Input Coils 100001-165536 Boolean Read Only
Internal Registers 300001-365536

300001-365535

3xxxxx.0/1-3xxxxx.15/16*

Word, Short, BCD
Float, DWord, Long, LBCD

Boolean

Read Only

Holding Registers 400001-465536
400001-465535

4xxxxx.0/1-4xxxxx.15/16*

Word, Short, BCD**
Float, DWord, Long, LBCD

Boolean

Read/Write

*For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.
**Address ranges 405001 to 405315 and 407001 to 407315 are 32-bit registers. Addresses in the range of
405001 to 405315 use a default data type of Long. Addresses in the range of 407001 to 407315 use a default
data type of Float. Since these address registers are 32 -bit, only Float, DWord, Long, or LBCD data types are
allowed. Arrays are not allowed.

Array Support
Arrays are supported for internal and holding register locations for all data types except Boolean. There are two
methods of addressing an array. The following examples use holding register locations:

4xxxx [rows] [cols]
4xxxx [cols] this method assumes "rows" is equal to one.

Rows multiplied by cols cannot exceed the block size that has been assigned to the device for the register type.
For arrays of 32-bit data types, rows multiplied by cols multiplied by 2 cannot exceed the block size.

Daniels S500 Flow Computer Addressing
The default data types for dynamically defined tags are shown in boldwhere appropriate. The Function Codes
are displayed in decimal. For more information, refer to Function Codes Description.

Address Hex
Range

Decimal
Range Data Type Function Codes Access

Totals 000-0FF 4096-4351 Double 03 Read Only

www. kepware.com

24

Modbus Serial Driver Help

Address Hex
Range

Decimal
Range Data Type Function Codes Access

Calculated /Measured
Variables

100-24F 4352-4687 Float 03, 16 Read/Write

Calculation Constants 250-28F 4688-4751 Float 03, 16 Read/Write
Keypad Default Values 290-2AF 4752-4783 Float 03, 16 Read/Write
Alarm and Scaling Constants 2B0-5FF 4784-5631 Float 03, 16 Read/Write
Status /Control 700-7FF 5888-6143 Boolean 01, 05 Read/Write
Alarms 800-FFF 6144-8191 Boolean 02 Read Only

Dynamic Fluid Meter Addressing
The default data types for dynamically defined tags are shown in boldwhere appropriate.

Dynamic Fluid Meter Addressing Decimal Format
Address Range Data Type Access
Holding Registers (16 bit) 400000-407000

400000-406999

408001-465535
408001-465534

4xxxxx.0/1-4xxxxx.15/16*

Word, Short, BCD
Float, DWord, Long,
LBCD

Word, Short, BCD
Float, DWord, Long,
LBCD

Boolean

Read/Write

Holding Registers (32 bit) 407001-408000 Float Read/Write
Holding Registers As
String
with HiLo Byte Order

400000.2H-407000.240H
408001.2H-465535.240H

.Bit is string length, range 2 to 240
bytes.

String Read/Write

Holding Registers As
String
with LoHi Byte Order

400000.2L-407000.240L
408001.2L-465535.240L

.Bit is string length, range 2 to 240
bytes.

String Read/Write

*For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.

Dynamic Fluid Meter Addressing Hexadecimal Format
Address Range Data Type Access
Holding Registers (16 bit) H400000-H401B58

H400000-H401B57

H401F41-H40FFFF
H401F41-H40FFFE

H4xxxxx.0/1-H4xxxxx.F/10*

Word, Short, BCD
Float, DWord, Long,
LBCD

Word, Short, BCD
Float, DWord, Long,
LBCD

Boolean

Read/Write

Holding Registers (32 bit) H401B59-H401F40 Float Read/Write
Holding Registers As
String
with HiLo Byte Order

H400000.2H-H401B58.240H
H401F41.2H-H40FFFF.240H

.Bit is string length, range 2 to 240
bytes.

String Read/Write

Holding Registers As
String
with LoHi Byte Order

H400000.2L-H401B58.240L
H401F41.2L-H0FFFF.240L

.Bit is string length, range 2 to 240
bytes.

String Read/Write

www. kepware.com

25

Modbus Serial Driver Help

*For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.

Note: This driver requires that all addresses begin with "4" for the Dynamic Fluid Meter model. This 4 may not
always be written explicitly in the Dynamic Fluid Meter documentation. For example, users may see a reference to
"Unit ID at address 3001". This value must be addressed in the server as "403001".

String Support
The Dynamic Fluid Meter model supports reading and writing holding register memory as an ASCII string. When
using holding registers for string data, each register will contain two bytes of ASCII data. The order of the ASCII
data within a given register can be selected when the string is defined. The length of the string can be from 2 to
240 bytes and is entered in place of a bit number. The length must be entered as an even number. The byte
order is specified by appending either a "H" or "L" to the address.

String Examples

1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter
"40200.100H".

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter "40500.78L".

Note: The string's length may be limited by the maximum size of the write request that the device will allow. If,
while utilizing a string tag, an error message of "Unable to write to address <address> on device <device>:
Device responded with exception code 3" is received in the server event window, this means the device did not
like the string's length. If possible, try shortening the string.

Omni Flow Computer Addressing
The default data types for dynamically defined tags are shown in bold.

Address Range Data Type Access
Digital I/O Point 1001-1024 Boolean Read/Write
Programmable Boolean Point 1025-1088 Boolean Read/Write
Meter Run Status and Alarm Points 1n01-001n59

1n76-1n99
n=Number of Meter Run

Boolean Read/Write

Micro Motion Alarm Status Points 1n60-1n75
n=Number of Meter Run

Boolean Read/Write

User Scratch Pad Boolean Points 1501-1599
1601 -1649

Boolean Read/Write

User ScratchPad One Shot Points 1650-1699 Boolean Read/Write
Command Boolean Points/Variables 1700-1798 Boolean Read/Write
Meter Station Alarm and Status Points 1801-1899 Boolean Read/Write
Prover Alarm and Status Points 1901-1967 Boolean Read/Write
Meter Totalizer Roll-over Flags 2n01-2n37

n=Number of Meter Run
Boolean Read/Write

Misc. Meter Station Alarm and Status 2601-2623 Boolean Read/Write
Station Totalizer Roll-over Flags 2801-2851 Boolean Read/Write
Station Totalizer Decimal Resolution 2852-2862

2865-2999
Boolean Read/Write

16-Bit Integer Data Addresses Range Data Type Access
Custom Data Packet #1 3001-3040 Short, Word, BCD Read/Write
Custom Data Packet #2 3041-3056 Short, Word, BCD Read/Write
Custom Data Packet #3 3057-3096 Short, Word, BCD Read/Write
Misc. 16-bit Integer Data 3097-3099

3737-3799
3875-3899

Short, Word, BCD Read/Write

Meter Run 16-bit Integer Data 3n01-3n52
n=Number of Meter Run

Short, Word, BCD Read/Write

Scratchpad 16-bit Integer Data 3501-3599 Short, Word, BCD Read/Write
User Display #1 3601-3608 Short, Word, BCD Read/Write
User Display #2 3609-3616 Short, Word, BCD Read/Write

www. kepware.com

26

Modbus Serial Driver Help

16-Bit Integer Data Addresses Range Data Type Access
User Display #3 3617-3624 Short, Word, BCD Read/Write
User Display #4 3625-3632 Short, Word, BCD Read/Write
User Display #5 3633-3640 Short, Word, BCD Read/Write
User Display #6 3641-3648 Short, Word, BCD Read/Write
User Display #7 3649-3656 Short, Word, BCD Read/Write
User Display #8 3657-3664 Short, Word, BCD Read/Write
Access Raw Data Archive Records 3701-3736 Short, Word, BCD Read/Write
Meter Station 16-bit Integer Data 3800-3842 Short, Word, BCD Read/Write
Meter #1 Batch Sequence 3843-3848 Short, Word, BCD Read/Write
Meter #2 Batch Sequence 3849-3854 Short, Word, BCD Read/Write
Meter #3 Batch Sequence 3855-3860 Short, Word, BCD Read/Write
Meter #4 Batch Sequence 3861-3866 Short, Word, BCD Read/Write
Flow Computer Time/Date 3867-3874 Short, Word, BCD Read/Write
Prover 16-bit Integer Data 3901-3999 Short, Word, BCD Read/Write

8 Character ASCII String Data Range Data Type Access
Meter Run ASCII Data 4n01-4n39

n=Number of Meter Run
String Read/Write

Scatch Pad ASCII Data 4501-4599 String Read/Write
User Display Definition Variables 4601 -4640 String Read/Write
Station Auxiliary Input Variables 4707-4710 String Read/Write
Meter Station ASCII Data 4801-4851 String Read/Write
Meter #1 Batch ID 4852-4863 String Read/Write
Meter #2 Batch ID 4864-4875 String Read/Write
Meter #3 Batch ID 4876-4887 String Read/Write
Meter #4 Batch ID 4888-4899 String Read/Write
Prover ASCII String Data 4901-4942 String Read/Write

32-Bit Integer Data Range Data Type Access
Meter Run 32-bit Integer Data 5n01-5n99

n=Number of Meter Run
Long, DWord, LBCD, Float Read/Write

Scratch Pad 32-bit Integer Data 5501-5599 Long, DWord, LBCD, Float Read/Write
Station 32-bit Integer Data 5801-5818 Long, DWord, LBCD, Float Read/Write
Meter #1 Batch Size 5819-5824 Long, DWord, LBCD, Float Read/Write
Meter #2 Batch Size 5825-5830 Long, DWord, LBCD, Float Read/Write
Meter #3 Batch Size 5831-5836 Long, DWord, LBCD, Float Read/Write
Meter #4 Batch Size 5837-5842 Long, DWord, LBCD, Float Read/Write
Additional 32-bit Meter Run Data 5843-5899 Long, DWord, LBCD, Float Read/Write
Prover 32-bit Integer Data 5901-5973 Long, DWord, LBCD, Float Read/Write
Compact Prover TDVOL/TDFMP Pulses 5974-5999 Long, DWord, LBCD, Float Read/Write

32-Bit IEEE Floating Point Data Range Data Type Access
Reserved Data 6001-7000 Float, Long, DWord, LBCD Read/Write
Digital to Analog Outputs 7001-7024 Float, Long, DWord, LBCD Read/Write
User Variables 7025-7088 Float, Long, DWord, LBCD Read/Write
Programmable Accumulator 7089-7099 Float, Long, DWord, LBCD Read/Write
Meter Run Data 7n01 - 7n99

n=Number of Meter Run
Float, Long, DWord, LBCD Read/Write

Scatch Pad Data 7501-7599 Float, Long, DWord, LBCD Read/Write
PID Control Data 7601-7623 Float, Long, DWord, LBCD Read/Write
Miscellaneous Meter Run Data 7624-7699 Float, Long, DWord, LBCD Read/Write
Miscellaneous Variables 7701-7799 Float, Long, DWord, LBCD Read/Write
Meter Station Data 7801-7899 Float, Long, DWord, LBCD Read/Write
Prover Data 7901-7918 Float, Long, DWord, LBCD Read/Write
Configuration Data for Prover 7919-7958 Float, Long, DWord, LBCD Read/Write

www. kepware.com

27

Modbus Serial Driver Help

32-Bit IEEE Floating Point Data Range Data Type Access
Last Prove Data 7959-7966 Float, Long, DWord, LBCD Read/Write
Data Rejected During Prove 7967-7990 Float, Long, DWord, LBCD Read/Write
Prove Run Data 7991-8050 Float, Long, DWord, LBCD Read/Write
Prove Average Data 8051-8079 Float, Long, DWord, LBCD Read/Write
Prove Run-Master Meter Data 8080-8199 Float, Long, DWord, LBCD Read/Write
Proving Series Data 8200-8223 Float, Long, DWord, LBCD Read/Write
Data of Meter Being Proved 8224-8230 Float, Long, DWord, LBCD Read/Write
Mass Prove Data 8231-8500 Float, Long, DWord, LBCD Read/Write
Miscellaneous Meter Run #1 8501-8599 Float, Long, DWord, LBCD Read/Write
Miscellaneous Meter Run #2 8601-8699 Float, Long, DWord, LBCD Read/Write
Miscellaneous Meter Run #3 8701-8799 Float, Long, DWord, LBCD Read/Write
Miscellaneous Meter Run #4 8801-8899 Float, Long, DWord, LBCD Read/Write
Station Previous Batch Average Data 8901-8999 Float, Long, DWord, LBCD Read/Write

16-Bit Integer Configuration Data Range Data Type Access
Meter Run #1 13001-13013 Short, Word, BCD Read/Write
Meter Run #2 13014-13026 Short, Word, BCD Read/Write
Meter Run #3 13027-13039 Short, Word, BCD Read/Write
Meter Run #4 13040-13052 Short, Word, BCD Read/Write
Prover Configuration 13053-13073 Short, Word, BCD Read/Write
General Flow Configuration 13074-13084 Short, Word, BCD Read/Write
Serial Port Configuration 13085-13128 Short, Word, BCD Read/Write
PID Configuration 13129-13160 Short, Word, BCD Read/Write
PLC Data 13161-13299 Short, Word, BCD Read/Write
Peer to Peer Setup 13300-13499 Short, Word, BCD Read/Write
Raw Data Archive 13500-13999 Short, Word, BCD Read/Write

16 Character ASCII String Data Range Data Type Access
Flow Computer Configuration 14001-14499 String Read/Write

32-Bit Integer Data Range Data Type Access
Flow Computer Configuration 15001-16999 Long, DWord, LBCD, Float Read/Write

32-Bit IEEE Floating Point Data Range Data Type Access
Flow Computer Configuration 17001-18999 Float, Long, DWord, LBCD Read/Write

Supported Extended Omni Types
Custom Packets
Raw Data Archive
Text Reports
Text Archive

Omni Custom Packets
The Omni Flow Computer allows users to map various ranges of memory to a single data structure that can be
read with a single, highly efficient read command. These data structures are called Custom Packets.

Packet Configuration
Each custom packet may contain up to twenty groups of data points. Each group is defined by its starting index
and the number of data points. The total size of the custom packet must not exceed 250 bytes. The addresses
used to define the custom packets are listed below.

Custom Packet 1 (address 1)
3001 Group 1-Starting index
3002 Group 2-Number of points

 to

www. kepware.com

28

Modbus Serial Driver Help

3039 Group 20-Starting index
3040 Group 20-Number of points

Custom Packet 2 (address 201)
3041 Group 1-Starting index
3042 Group 2-Number of points

 to

3055 Group 20-Starting index
3056 Group 20-Number of points

Custom Packet 3 (address 401)
3057 Group 1-Starting index
3058 Group 2-Number of points

 to

3095 Group 20-Starting index
3096 Group 20-Number of points

Note: Data is returned from the device as 16-bit registers. Digital I/O must be mapped in blocks of 16 bits.

Custom Packet Address Syntax
Tags can be created to access data at a given offset within a custom packet. The address syntax is as follows. The
default data types are shown in bold.

Address Range Data Type Access
CPn_o n = Packet Number (1-3)

o = Word offset (0-125)
Word, Short, BCD, DWord, Long, LBCD, Float, String Read Only

CPn_o.b n = Packet Number (1-3)
o = Word offset (0-125)
b = Bit number (0/1-15/16)*

Boolean Read Only

*For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.

Notes:

1. Only 8 character ASCII string data is supported.

2. If a 16 character ASCII string data address is contained in group configuration, then data can be read as
two 8 character ASCII string data items.

Example
Define Custom Packet #1 to map to the following:

l 16 bits of digital I/O (1001-1016).
l Fifteen 32-bit integers of Meter Run 1 Batch data (5101 -5115).
l Twelve 32-bit floats of Analog Outputs (7001-7012).
l Four 8-character ASCII strings of Meter Run (4101-4104).
l Six 8-character ASCII strings of Meter Station (4808-4813).
l Two 16-character ASCII strings of Flow Configuration data (14001-14002).

Note: This will make a total of 222 bytes. The custom packet configuration registers would have the following
values:

3001 = 1001
3002 = 16
3003 = 5101
3004 = 15
3005 = 7001
3006 = 12
3007 = 4101
3008 = 4
3009 = 4808
3010 = 6

www. kepware.com

29

Modbus Serial Driver Help

3011 = 14001
3012 = 2

Tags to access the Digital I/O data would have the following addresses (all 16 values contained in word 0):
CP1_0.0 (Word 0 of Custom Packet 1, bit 0-mapped to 1009)
CP1_0.1 (Word 0 of Custom Packet 1, bit 1-mapped to 1010)
...
CP1_0.6 (Word 0 of Custom Packet 1, bit 6-mapped to 1015)
CP1_0.7 (Word 0 of Custom Packet 1, bit 7-mapped to 1016)
CP1_0.8 (Word 0 of Custom Packet 1, bit 8-mapped to 1001)
CP1_0.9 (Word 0 of Custom Packet 1, bit 9-mapped to 1002)
...
CP1_0.14 (Word 0 of Custom Packet 1, bit 14-mapped to 1007)
CP1_0.15 (Word 0 of Custom Packet 1, bit 15-mapped to 1008)

Tags to access the Meter Run 1 Batch data would have the following addresses (each 32-bit value uses 2 words):
CP1_1 (Word 1 of Custom Packet 1-mapped to 5101)
CP1_3 (Word 3 of Custom Packet 1-mapped to 5102)
...
CP1_29 (Word 29 of Custom Packet 1-mapped to 5115)

Tags to access the Analog Output data would have the following addresses (each 32-bit value uses 2 words):
CP1_31 (Word 31 of Custom Packet 1-mapped to 7001)
CP1_33 (Word 33 of Custom Packet 1-mapped to 7002)
...
CP1_53 (Word 53 of Custom Packet 1-mapped to 7012)

Tags to access the Meter Run 8 character ASCII String data would have the following addresses (each String
value uses 4 words):
CP1_55 (Word 55 of Custom Packet 1-mapped to 4101)
...
CP1_67 (Word 67 of Custom Packet 1-mapped to 4104)

Tags to access the Meter Station 8 character ASCII String data would have the following addresses (each String
value uses 4 words):
CP1_71 (Word 71 of Custom Packet 1-mapped to 4808)
...
CP1_91 (Word 91 of Custom Packet 1-mapped to 4813)

Tags to access the Flow Configuration 16 character ASCII String data would have the following addresses (each
String value uses 4 words):
CP1_95 (Word 95 of Custom Packet 1-mapped to 14001 characters 1-8)
CP1_99 (Word 99 of Custom Packet 1-mapped to 14001 characters 9-16)
CP1_103 (Word 103 of Custom Packet 1-mapped to 14002 characters 1-8)
CP1_107 (Word 107 of Custom Packet 1-mapped to 14002 characters 9-16)

Omni Raw Data Archive
The Omni Flow Computer may be configured to map various ranges of memory to a single data structure, and
then store that structure in an archive when triggered. Users may configure up to ten archives. There are two
additional fixed format archives for Alarm and Audit data. Each archive is a circular buffer, where each new
record replaces the oldest record.

Record Configuration and Retrieval
Users may configure the record structure of Raw Data Archives 1 to 10. Archives 11 and 12 are of fixed format
and contain Alarm and Audit data respectively. For a full discussion of Raw Data Archives, refer to Omni Technical
Bulletin 96073.

Each record may contain up to sixteen groups of data points. Each group is defined by its starting index and the
number of data points. The addresses used to define the archive records are listed below. The total size of the
record must not exceed 250 bytes. The device will use the first 6 bytes for date and time stamp data, leaving 244
bytes for raw data. Each record will have its own Boolean trigger. Data will be stored when the trigger goes from
low to high.

Before a group starting index, number of points in group or trigger for a raw data archive can be changed,
archiving must halt. The Allow Archive Configuration Flagmust be set in the device. Be aware that doing this
will likely cause the data archive in the device to be reinitialized, including all Raw Data Archives and the Text
Archive.

www. kepware.com

30

Modbus Serial Driver Help

13920 Archive Run-0=stop, 1= start
13921 Reconfigure Archives-0=no configuration changes allowed, 1=configuration changes allowed

This driver may be used to read a Raw Data Archive one record at a time. To read a record, first write the desired
record index to the "Requested record" register. Once this value is set, users may read the record with an "RA"
tag. Users should ensure that the specified record index does not exceed the maximum number of records
allowed for that archive. If the "Last record updated" value is zero, there have been no records saved in the
archive since it was last initialized.

Raw Data Archive 1 (address 701)
13500 Group 1-Starting Index
13501 Group 1-Number of Points

 to

13530 Group 16-Starting Index
13531 Group 16-Number of points

13900 Trigger Boolean

3701 Maximum number of records
3702 Last record updated
3703 Requested record

Raw Data Archive 2 (address 702)
13540 Group 1-Starting Index
13541 Group 1-Number of Points

 to

13570 Group 16-Starting Index
13571 Group 16-Number of points

13901 Trigger Boolean

3704 Maximum number of records
3705 Last record updated
3706 Requested record

Raw Data Archive 3 (address 703)
13580 Group 1-Starting Index
13581 Group 1-Number of Points

 to

13610 Group 16-Starting Index
13611 Group 16-Number of points

13902 Trigger Boolean

3707 Maximum number of records
3708 Last record updated
3709 Requested record

Raw Data Archive 4 (address 704)
13620 Group 1-Starting Index
13621 Group 1-Number of Points

 to

13650 Group 16-Starting Index
13651 Group 16-Number of points

13903 Trigger Boolean

3710 Maximum number of records
3711 Last record updated
3712 Requested record

www. kepware.com

31

Modbus Serial Driver Help

Raw Data Archive 5 (address 705)
13660 Group 1-Starting Index
13661 Group 1-Number of Points

 to

13690 Group 16-Starting Index
13691 Group 16-Number of points

13904 Trigger Boolean

3713 Maximum number of records
3714 Last record updated
3715 Requested record

Raw Data Archive 6 (address 706)
13700 Group 1-Starting Index
13701 Group 1-Number of Points

 to

13730 Group 16-Starting Index
13731 Group 16-Number of points

13905 Trigger Boolean

3716 Maximum number of records
3717 Last record updated
3718 Requested record

Raw Data Archive 7 (address 707)
13740 Group 1-Starting Index
13741 Group 1-Number of Points

 to

13770 Group 16-Starting Index
13771 Group 16-Number of points

13906 Trigger Boolean

3719 Maximum number of records
3720 Last record updated
3721 Requested record

Raw Data Archive 8 (address 708)
13780 Group 1-Starting Index
13781 Group 1-Number of Points

 to

13810 Group 16-Starting Index
13811 Group 16-Number of points

13907 Trigger Boolean

3722 Maximum number of records
3723 Last record updated
3724 Requested record

Raw Data Archive 9 (address 709)
13820 Group 1-Starting Index
13821 Group 1-Number of Points

 to

13850 Group 16-Starting Index
13851 Group 16-Number of points

13908 Trigger Boolean

www. kepware.com

32

Modbus Serial Driver Help

3725 Maximum number of records
3726 Last record updated
3727 Requested record

Raw Data Archive 10 (address 710)
13860 Group 1-Starting Index
13861 Group 1-Number of Points

 to

13890 Group 16-Starting Index
13891 Group 16-Number of points

13909 Trigger Boolean

3728 Maximum number of records
3729 Last record updated
3730 Requested record

Raw Data Archive 11 Alarm (address 711)
Not configurable

3731 Maximum number of records
3732 Last record updated
3733 Requested record

Raw Data Archive 12 Archive (address 712)
Not configurable

3734 Maximum number of records
3735 Last record updated
3736 Requested record

Note: Data is returned from the device as 16-bit registers. Digital I/O must be mapped in blocks of 16 bits.

Raw Data Archive Address Syntax
Tags can be created to access data at a given offset within a Raw Data Archive record. The address syntax is as
follows. The default data types are shown in bold.

Address Range Data Type Access
RAn_o n = Archive Number (1-12)

o = Word offset (0-125)
Word, Short, BCD, DWord, Long, LBCD, Float, String Read Only

RAn_o.b n = Archive Number (1-12)
o = Word offset (0-125)
b = Bit number (0/1-15/16)*

Boolean Read Only

*For more information, refer to "Zero vs. One Based Bit Addressing Within Registers" in Settings.

Notes:

1. Only 8 character ASCII string data is supported.

2. If a 16 character ASCII string data address is contained in group configuration, then data can be read as
two 8 character ASCII string data items.

Timestamp Format
The first 6 bytes of each record contains the time and date that the record was placed in the archive.

Byte Description
1 Month (1-12)*

Day (1-31)
2 Day (1-31)*

Month (1-12)
3 Year (0-99)
4 Hour (0-23)

www. kepware.com

33

Modbus Serial Driver Help

5 Minute (0-59)
6 Seconds (0-59)

*Date format is set with register 3842 (0=dd/mm/yy, 1= mm/dd/yy).

Alarm/Event Log Record Structure (Address 711)
Field Data Type Description
1 3-Byte Date dd/mm/yy or mm/dd/yy.
2 3-Byte Time hh/mm/ss.
3 16-bit Integer Modbus Index # of alarm or event.
4 1 Byte Alarm Type.
5 1 Byte 0=OK, 1=Alarm.
6 IEEE Float Value of transducer variable at the time of alarm or event.
7 32-bit Integer Volume totalizer at the time of the alarm or event.
8 32-bit Integer Mass totalizer at the time of the alarm or event.

Alarm Types
Type Description
0 Log event, sound beeper and display in LCD any edge change in bit identified by filed #3.
1 Log event, sound beeper and display in LCD rising edge changes in bit identified by filed #3.
2 Event Log any edge change in bit identified by field #3. No beeper or LCD display action.
3 Event Log rising edge changes in bit identified by field #3. No beeper or LCD display action.

Audit Event Log Record Structure (Address 712)
Field Data Type Description
1 3-Byte Date dd/mm/yy or mm/dd/yy.
2 3-Byte Time hh/mm/ss.
3 16-bit Integer Event number, increments for each event, rolls at 65535.
4 16-bit Integer Modbus index of variable changed.
5 IEEE Float Numeric variable value before change-old value.
6 IEEE Float Numeric variable value after change-new value.
7 16-Char ASCII String variable value before change-old value.
8 16-Char ASCII String variable value after change-new value.
9 32-bit Integer Volume totalizer at time of change.
10 32-bit Integer Mass totalizer at the time of the change.

Note: Fields 5 and 6 are set to 0.0 when the variable type changed is a string. Fields 7 and 8 contain null
characters when the variable type change is not a string. When fields 7 and 8 contain 8 character strings, the
remaining 8 characters are padded with nulls.

Omni Text Reports
The Omni Flow computer can generate several different types of text reports. Each of these reports can be read
by this driver and sent to the OPC Client as a string value.

Text Report Types
There are a number of report types that can be retrieved from the Omni Flow Computer. They may be read using
a "TR" tag. The report types are as follows.

Custom Report Templates
9001 Report Template-Snapshot / Interval
9002 Report Template-Batch
9003 Report Template-Daily
9003 Report Template-Prove

Previous Batch Reports
9101 Batch Report-Last
9102 Batch Report-Second from Last
...
9108 Batch Report-Eighth from last

www. kepware.com

34

Modbus Serial Driver Help

Previous Prove Reports
9201 Prove Report-Last
9202 Prove Report-Second from last
...
9208 Prove Report-Eighth from last

Previous Daily Reports
9301 Previous Day's Report-Last
9302 Previous Day's Report-Second from last
...
9308 Previous Day's Report-Eighth from last

Last Snapshot Report
9401 Last Local Snapshot / Interval Report

Miscellaneous Report Buffer
9402 Miscellaneous Report Buffer

Text Report Address Syntax
Address Range Data Type Access
TRn
TRn T (triggered read)

n = Report address (9001-9402) String Read/Write

Example
To read or write to the Snapshot Report Template (address 9001), create a tag with address "TR9001".

Note: Because it can take several seconds to read a Text Report, the "TR" tags should be kept inactive in the OPC
client. Alternatively, triggered reads can be used instead. No other tags on the channel can be read or written to
while the driver is reading or writing a Text Report.

Triggered Text Report Reads
As noted above, it is recommended that the Text Report tag be kept inactive, even though it is not always
possible. A triggered read capability has been added as an alternative, allowing the Text Archive tag to remain
active. It also controls when the actual device reads occur with an auxiliary trigger tag.

A triggered read may not begin immediately depending on when in the Text Report tag's update cycle the trigger
is set. After the read attempt has been completed, the driver will clear the trigger state. The Text Report tag will
show the value and data quality that resulted from the last triggered read attempt.

Text Report Read Trigger Address Syntax
Address Range Data Type Access
TRIG_TRn n = Report address (9001-9402) Boolean Read/Write

Example
To read the Last Batch Report (address 9101) on trigger, create two tags. The first is a Text Report tag with
address "TR9101 T", and the second is a Text Report Read Trigger tag with address "TRIG_TR9101".

Note: The Text Report tag address looks like a normal Text Report address followed by a space and the letter "T"
for "triggered read". This "T" must be present in the address for triggered reads to work.

To trigger a read, set the trigger tag value to true (non-zero). After the read attempt has been completed, the
driver will set the trigger value to false (0). If the read was successful, the Text Report tag's data quality will be
Good. If the read failed, the Text Report tag's data quality will be Bad, and the value will be the last value
successfully read.

Saving Text Report Data To Disk
The driver has the ability to save Text Report data to disk. This feature is enabled by using Text Report Path tags.
These tags are used to write file path strings to the driver's memory. Each report type has its own path buffer.
After a successful Text Report read, the driver will check the associated path buffer. If a valid path is stored
there, the driver will save the report data as ASCII text in that file. The file will be created if needed. The file will
be overwritten on subsequent Text Report reads.

The path buffers are initialized to empty strings on server start up. The driver will not write Text Report data to
file until a valid path is saved in the associated path buffer. Path data is not persistent. The path strings must be

www. kepware.com

35

Modbus Serial Driver Help

rewritten each time the server is restarted. The path values can be changed at any time, allowing users to save
data to different files on each read if desired.

Path strings may be up to 255 characters long.

Text Report Path Address Syntax
Address Range Data Type Access
PATH_TRn n = Report address (9001-9402) String Read/Write

Example
To read the Last Batch Report (address 9101) and save the result to disk, create two tags. The first is a Text
Report tag with address "TR9101", and the second is a path tag with address "PATH_TR9101".

To save the report data in a file called "LastBatch.txt" (which is to be created in the folder
"C:\OmniData\BatchReports") set up the client so that the first thing that it does is write
"C:\OmniData\BatchReports\LastBatch.txt" to the path tag. Once this is done, read the Text Report tag. If the
path is not set before the first read of the Text Report, the driver will not be able to save the data to disk.

Note: To disable this feature, write a empty string to the path tag.

Omni Text Archive
The Omni Flow Computer can also store reports in an archive. This driver can read a range of reports from the
archive and send them to the OPC client as a string value.

Reading the Text Archive
Before the text archive can be read, two settings must be made in the device: the archive start date, and the
number of days to retrieve. These 32-bit integer values are at addresses 15128 and 15127 respectively. The
date format may be specified using the value at address 3842 (0 = dd/mm/yy, 1 = mm/dd/yy). Shortly after the
number of days is set, the device will begin preparing the data. When the data is ready to be read, the number of
days value will become negative. The Text Archive can be read at any time after the number of days is set. The
driver will wait for the value to become negative.

Text Archive Address Syntax
Address Range Data Type Access
TA
TA T (triggered read)

N/A String Read Only

Note: Because it can take several minutes to read a Text Archive, the "TA" tag should be kept inactive in the OPC
client. Alternatively, triggered reads can be used instead. This tag should only be read using asynchronous
reads, since the maximum synchronous read timeout cannot be increased high enough in the server to read a
typical text archive request. No other tags on the channel can be read or written to while the Text Archive is being
read.

If a Text Archive read fails midway, users should reset the device's read buffer by writing 999 to the number of
days register (15127), and then repeat the normal Text Archive read procedure. Otherwise, the driver may not
get the first part of the requested archive range.

Triggered Text Archive Reads
It is recommended that the Text Archive tag be kept inactive even though it is not always possible. A triggered
read capability has been added as an alternative, thus allowing the Text Archive tag to remain active. It also
controls when the actual device reads occur with an auxiliary trigger tag. The trigger value is stored in the
driver's memory and may be read and set using a tag with the address syntax described below.

A triggered read may not begin immediately depending on when in the Text Archive tag's update cycle the trigger
is set. After the read attempt has been completed, the driver will clear the trigger state. The Text Archive tag will
show the value and data quality that resulted from the last triggered read attempt.

Text Archive Read Trigger Address Syntax
Address Range Data Type Access
TRIG_TA N/A Boolean Read/Write

Example

www. kepware.com

36

Modbus Serial Driver Help

To read the Text Archive on trigger, create two tags. The first is a Text Archive tag with address "TA T", and the
second is a Text Archive Read Trigger tag with address "TRIG_TA". Users will also have to create start date and
number of days tags.

Note: The Text Archive tag address looks like a normal Text Archive address followed by a space and the letter
"T" for "triggered read". This "T" must be present in the address for triggered reads to work.

To trigger a read, set the trigger tag value to true (non-zero). After the read attempt has been completed, the
driver will set the trigger value to false (0). If the read was successful, the Text Archive tag's data quality will be
Good. If the read failed, the Text Archive tag's data quality will be Bad and the value will be the last value
successfully read.

Saving Text Archive Data To Disk
The driver has the ability to save Text Archive data to disk. This feature is enabled using a Text Archive Path tag.
This tag is used to write a file path string to the driver's memory. After a successful Text Archive read, the driver
will check the associated path buffer. If a valid path is stored there, the driver will save the Text Archive data as
ASCII text in that file. The file will be created if needed. The file will be overwritten on subsequent Text Archive
reads.

The path buffer is initialized to an empty string on server start up. The driver will not write Text Archive data to
file until a valid path is saved in the associated path buffer. Path data is not persistent. Users will have to rewrite
the path string each time the server is restarted. The path value can be changed at any time, allowing the data to
be saved to different files on each read (if desired).

The path string may be up to 255 characters long.

Text Archive Path Address Syntax
Address Range Data Type Access
PATH_TA N/A String Read/Write

Example
To read the Text Archive and save the result to disk, create two tags. The first is a Text Archive tag with address
"TA", and the second is a path tag with address "PATH_TA". Users will also have to create start date and number
of days tags as described above.

To save the Text Archive data in a file called "TextArchive.txt" (which is to be created in the folder
"C:\OmniData\ArchiveData") set up the client so that the first thing that it does is write
"C:\OmniData\ArchiveData\TextArchive.txt" to the path tag. Once this is done, read the Text Archive tag. If the
path is not set before the first read of the Text Archive, the driver will not be able to save the data to disk.

Note: To disable this feature, write a empty string to the path tag.

Function Codes Description
Modbus Addressing Model
Decimal Hexadecimal Description
01 0x01 Read Coil Status
02 0x02 Read Input Status
03 0x03 Read Holding Registers
04 0x04 Read Internal Registers
05 0x05 Force Single Coil
06 0x06 Preset Single Register
15 0x0F Force Multiple Coils
16 0x10 Preset Multiple Registers
22 0x16 Masked Write Register

Daniels S500 Flow Computer Addressing Model
Decimal Hexadecimal Description
01 0x01 Read Coil Status
02 0x02 Read Input Coil
03 0x03 Read Holding Registers
05 0x05 Force Single Coil

www. kepware.com

37

Modbus Serial Driver Help

Decimal Hexadecimal Description
16 0x10 Preset Multiple Registers

Statistics Items
Statistical items use data collected through additional diagnostics information, which is not collected by default.
To use statistical items, Communication Diagnostics must be enabled. To enable Communication Diagnostics,
right-click on the channel in the Project View and click Properties | Enable Diagnostics. Alternatively, double-
click on the channel and select Enable Diagnostics.

Channel-Level Statistics Items
The syntax for channel-level statistics items is <channel>._Statistics.

Note: Statistics at the channel level are the sum of those same items at the device level.

Item Data Type Access Description
_CommFailures DWord Read/Write The total number of times communication

has failed (or has run out of retries).
_ErrorResponses DWord Read/Write The total number of valid error responses

received.
_ExpectedResponses DWord Read/Write The total number of expected responses

received.
_LastResponseTime String Read Only The time at which the last valid response

was received.
_LateData DWord Read/Write The total number of times that a driver

tag's data update occurred later than
expected (based on the specified scan
rate).

_MsgResent DWord Read/Write The total number of messages sent as a
retry.

_MsgSent DWord Read/Write The total number of messages sent
initially.

_MsgTotal DWord Read Only The total number of messages sent (both
_MsgSent + _MsgResent).

_PercentReturn Float Read Only The proportion of expected responses
(Received) to initial sends (Sent) as a
percentage.

_PercentValid Float Read Only The proportion of total valid responses
received (_TotalResponses) to total
requests sent (_MsgTotal) as a
percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to
the _Reset Tag causes all diagnostic
counters to be reset at this level.

_RespBadChecksum DWord Read/Write The total number of responses with
checksum errors.

_RespTimeouts DWord Read/Write The total number of messages that failed
to receive any kind of response.

_RespTruncated DWord Read/Write The total number of messages that
received only a partial response.

_TotalResponses DWord Read Only The total number of valid responses
received (_ErrorResponses + _
ExpectedResponses).

Statistical items are not updated in simulation mode (see device general properties).

Device-Level Statistics Items
The syntax for device-level statistics items is <channel>.<device>._Statistics.

Item Data Type Access Description
_CommFailures DWord Read/Write The total number of times communication

has failed (or has run out of retries).

www. kepware.com

38

Modbus Serial Driver Help

Item Data Type Access Description
_ErrorResponses DWord Read/Write The total number of valid error responses

received.
_ExpectedResponses DWord Read/Write The total number of expected responses

received.
_LastResponseTime String Read Only The time at which the last valid response

was received.
_LateData DWord Read/Write The total number of times that a driver

tag's data update occurred later than
expected (based on the specified scan
rate).

_MsgResent DWord Read/Write The total number of messages sent as a
retry.

_MsgSent DWord Read/Write The total number of messages sent
initially.

_MsgTotal DWord Read Only The total number of messages sent (both
_MsgSent + _MsgResent).

_PercentReturn Float Read Only The proportion of expected responses
(Received) to initial sends (Sent) as a
percentage.

_PercentValid Float Read Only The proportion of total valid responses
received (_TotalResponses) to total
requests sent (_MsgTotal) as a
percentage.

_Reset Bool Read/Write Resets all diagnostic counters. Writing to
the _Reset Tag causes all diagnostic
counters to be reset at this level.

_RespBadChecksum DWord Read/Write The total number of responses with
checksum errors.

_RespTimeouts DWord Read/Write The total number of messages that failed
to receive any kind of response.

_RespTruncated DWord Read/Write The total number of messages that
received only a partial response.

_TotalResponses DWord Read Only The total number of valid responses
received (_ErrorResponses + _
ExpectedResponses).

Statistical items are not updated in simulation mode (see device general properties).

www. kepware.com

39

Modbus Serial Driver Help

Error Descriptions
The following categories of messages may be generated. Click on the link for a list of the messages.

Address Validation
Serial Communications
Device Status Messages
Modbus Serial Specific Messages
Automatic Tag Database Generation Messages

See Also:
Modbus Exception Codes

Address Validation
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Address <address> is out of range for the specified device or register.
Array size is out of range for address <address>.
Array support is not available for the specified address: <address>.
Data Type <type> is not valid for device address <address>.
Device address <address> contains a syntax error
Device address <address> is not supported by model <model name>.
Device address <address> is read only.
Missing address.
Received block length of <received length> does not match expected length of <expected length>
for address <address> on device <device>.

Address <address> is out of range for the specified device or register.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is beyond the range of supported
locations for the device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application.

Array size is out of range for address <address>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically is requesting an array size that is too large for the address type or
block size of the driver.

Solution:
Re-enter the address in the client application to specify a smaller value for the array or a different starting point.

Array support is not available for the specified address: <address>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains an array reference for an address type that doesn't
support arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

www. kepware.com

40

Modbus Serial Driver Help

Data Type <type> is not valid for device address <address>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address <address> contains a syntax error.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains one or more invalid characters.

Solution:
Re-enter the address in the client application.

Device address <address> is not supported by model <model name>.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is valid for the communications protocol
but not supported by the target device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application. Also verify that the selected
model name for the device is correct.

Device address <address> is read only.
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has a requested access mode that is not compatible with what the
device supports for that address.

Solution:
Change the access mode in the client application.

Missing address
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has no length.

Solution:
Re-enter the address in the client application.

Received block length of <received length> does not match expected length of
<expected length> for address <address> on device <device>.
Error Type:
Warning

Possible Cause:

www. kepware.com

41

Modbus Serial Driver Help

The driver attempted to read a block of memory but the PLC did not provide the driver with the requested size of
data. No error code was returned.

Solution:
N/A

Serial Communications
The following error/warning messages may be generated. Click on the link for a description of the message.

Serial Communications
Communications error on <channel name> [<error mask>].
COMn does not exist.
COMn is in use by another application.
Error opening COMn.
Unable to set comm parameters on COMn.

Communications error on <channel name> [<error mask>].
Error Type:
Serious

Error Mask Definitions:
B = Hardware break detected.
F = Framing error.
E = I/O error.
O = Character buffer overrun.
R = RX buffer overrun.
P = Received byte parity error.
T = TX buffer full.

Possible Cause:

1. The serial connection between the device and the Host PC is bad.

2. The communications parameters for the serial connection are incorrect.

Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

COMn does not exist.
Error Type:
Fatal

Possible Cause:
The specified COM port is not present on the target computer.

Solution:
Verify that the proper COM port has been selected.

COMn is in use by another application.
Error Type:
Fatal

Possible Cause:
The serial port assigned to a device is being used by another application.

Solution:

www. kepware.com

42

Modbus Serial Driver Help

1. Verify that the correct port has been assigned to the channel.

2. Verify that only one copy of the current project is running.

Error opening COMn.
Error Type:
Fatal

Possible Cause:
The specified COM port could not be opened due an internal hardware or software problem on the target
computer.

Solution:
Verify that the COM port is functional and may be accessed by other Windows applications.

Unable to set comm parameters on COMn.
Error Type:
Fatal

Possible Cause:
The serial parameters for the specified COM port are not valid.

Solution:
Verify the serial parameters and make any necessary changes.

Device Status Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Device Status Messages
Device <device name> is not responding.
Unable to write to address <address> on device <device>: Device responded with exception code
<code>.
Unable to write to <address> on device <device name>.
Write failed for <tag name> on device <device name>. Maximum path length of <number>
characters exceeded.

Device <device name> is not responding.
Error Type:
Serious

Possible Cause:

1. The serial connection between the device and the Host PC is broken.

2. The communications parameters for the serial connection are incorrect.

3. The named device may have been assigned an incorrect Network ID.

4. The response from the device took longer to receive than the amount of time specified in the "Request
Timeout" device setting.

Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify the specified communications parameters match those of the device.

3. Verify the Network ID given to the named device matches that of the actual device.

4. Increase the Request Timeout setting so that the entire response can be handled.

www. kepware.com

43

Modbus Serial Driver Help

Unable to write to address <address> on device <device>: Device responded
with exception code <code>.
Error Type:
Warning

Possible Cause:
SeeModbus Exception Codes for a description of the exception code.

Solution:
SeeModbus Exception Codes.

Unable to write to <address> on device <device name>.
Error Type:
Serious

Possible Cause:

1. The serial connection between the device and the host PC is broken.

2. The communications parameters for the serial connection are incorrect.

3. The named device may have been assigned an incorrect network ID.

Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify the specified communications parameters match those of the device.

3. Verify that the Network ID given to the named device matches that of the actual device.

Write failed for <tag name> on device <device name>. Maximum path length
of <number> exceeded.
Error Type:
Warning

Possible Cause:
Path length is limited to the indicated number of characters.

Solution:
Devise a shorter path.

Modbus Serial Specific Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Modbus Serial Specific Messages
Bad address in block [<start address> to <end address>] on device <device name>.
Bad array spanning [<address> to <address>] on device <device>.
Could not read Omni text buffer due to memory allocation problem.
Could not read Omni text report <address> on device <device name> due to packet number limit.
Error writing Omni text data to file for <tag name> on device <device name> because <reason>.
No Omni text archive data available in specified date range on device <device name>.
Omni text output file specified for <tag name> on device <device name> could not be opened
because <reason>.
Write to Omni text report <address> on device <device name> truncated.

Bad address in block [<start address> to <end address>] on device <device
name>.
Error Type:
Serious

www. kepware.com

44

Modbus Serial Driver Help

Possible Cause:

1. An attempt has been made to reference a nonexistent location in the specified device.

2. An attempt has been made to read more registers than allowed by the protocol.

Solution:

1. Verify the tags assigned to addresses in the specified range on the device and eliminate ones that
reference invalid locations.

2. Decrease the register block size value to 125.

See Also:
Error Handling
Block Sizes

Bad array spanning [<address> to <address>] on device <device>.
Error Type:
Serious

Possible Cause:

1. An attempt has been made to reference a nonexistent location in the specified device.

2. An attempt has been made to read more registers than allowed by the protocol.

Solution:

1. Verify that all the register addresses requested in the array exist in the device and reduce the array size
such that only valid addresses (that exist in the device) are requested by the array.

2. Reduce the array size value to 125.

See Also:
Error Handling
Block Sizes

Could not read Omni text buffer due to memory allocation problem.
Error Type:
Serious

Possible Cause:
The driver could not allocate memory required for an Omni Text Record or Text Archive read operation.

Solution:
Shutdown all unnecessary applications and then retry.

Could not read Omni text report <address> on device <device name> due to
packet limit.
Error Type:
Serious

Possible Cause:
Text reports are expected to be 8192 bytes or less. This is a limit imposed by the protocol. The driver read 8192
bytes before encountering the expected end of file character.

Solution:
Verify that the report template used by the device will generate reports of 8192 bytes or less.

www. kepware.com

45

Modbus Serial Driver Help

Error writing Omni text data to file for <tag name> on device <device name>
because <reason>.
Error Type:
Warning

Possible Cause:
The driver could not write the Omni text data to disk for the indicated reason.

Solution:
The operating system supplies the reason indicated. The reason should determine appropriate corrective
measures.

No Omni text archive data available in specified date range on device <device
name>.
Error Type:
Warning

Possible Cause:
No data was stored in the text archive for the date range specified by the Start Date register (15128) and the
Number of Days register (15127).

Solution:
This is not necessarily an error.

Omni text output file specified for <tag name> on device <device name> could
not be opened because <reason>.
Error Type:
Warning

Possible Cause:
The file specified in an Omni Text Path tag could not be created or opened.

Solution:
The operating system supplies the reason indicated. The reason should determine appropriate corrective
measures. The most likely cause is an invalid path.

See Also:
Omni Text Reports
Omni Text Archive
Write to Omni text report <address> on device <device name> truncated.
Error Type:
Serious

Possible Cause:
An attempt was made to write more than 8192 bytes to a text report. This is a limit imposed by the protocol.

Solution:
Do not write strings greater than the 8192 byte limit. If the string is longer, only the first 8192 characters will be
written to the device.

Automatic Tag Database Generation Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Automatic Tag Database Generation Messages
Description truncated for import file record number <record>.
Error parsing import file record number <record>, field <field>.
File exception encountered during tag import.
Imported tag name <tag name> is invalid. Name changed to <tag name>.
Tag <tag name> could not be imported because data type <data type> is not supported.

www. kepware.com

46

Modbus Serial Driver Help

Tag import failed due to low memory resources.

Description truncated for import file record number <record>.
Error Type:
Warning

Possible Cause:
The tag description given in specified record is too long.

Solution:
The driver will truncate the description as needed. To prevent this error in the future, edit the variable import file
to change the description if possible.

Error parsing import file record number <record>, field <field>.
Error Type:
Serious

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or invalid.

Solution:
Edit the variable import file to change the offending field if possible.

File exception encountered during tag import.
Error Type:
Serious

Possible Cause:
The variable import file could not be read.

Solution:
Regenerate the variable import file.

Imported tag name <tag name> is invalid. Name changed to <tag name>.
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Solution:
The driver will construct a valid name based on the one from the variable import file. To prevent this error in the
future, and to maintain name consistency, change the name of the exported variable (if possible).

Tag <tag name> could not be imported because data type <data type> is not
supported.
Error Type:
Warning

Possible Cause:
The driver does not support the data type specified in the variable import file.

Solution:
Change the data type specified in the variable import file to one that is supported. If the variable is for a
structure, manually edit the file to define each tag required for the structure. Alternatively, configure the
required tags manually in the OPC server.

See Also:
Exporting Variables from Concept

www. kepware.com

47

Modbus Serial Driver Help

Tag import failed due to low memory resources.
Error Type:
Serious

Possible Cause:
The driver could not allocate memory required to process variable import file.

Solution:
Shut down all unnecessary applications and then retry.

Modbus Exception Codes
The following data is from Modbus Application Protocol Specifications documentation.

Code Dec/Hex Name Meaning
01/0x01 ILLEGAL

FUNCTION
The function code received in the query is not an allowable action for
the server (or slave). This may be because the function code is only
applicable to newer devices, and was not implemented in the unit
selected. It could also indicate that the server (or slave) is in the
wrong state to process a request of this type, for example, because it
is unconfigured and is being asked to return register values.

02/0x02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address
for the server (or slave). More specifically, the combination of
reference number and transfer length is invalid. For a controller with
100 registers, a request with offset 96 and length 4 would succeed.
A request with offset 96 and length 5 will generate exception 02.

03/0x03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for
server (or slave). This indicates a fault in the structure of the
remainder of a complex request, such as that the implied length is
incorrect. It specifically does not mean that a data item submitted for
storage in a register has a value outside the expectation of the
application program, since the Modbus protocol is unaware of the
significance of any particular value of any particular register.

04/0x04 SLAVE DEVICE
FAILURE

An unrecoverable error occurred while the server (or slave) was
attempting to perform the requested action.

05/0x05 ACKNOWLEDGE The slave has accepted the request and is processing it, but a long
duration of time will be required to do so. This response is returned
to prevent a timeout error from occurring in the master. The master
can next issue a Poll Program Complete message to determine if
processing is completed.

06/0x06 SLAVE DEVICE
BUSY

The slave is engaged in processing a long-duration program
command. The master should retransmit the message later when the
slave is free.

07/0x07 NEGATIVE
ACKNOWLEDGE

The slave cannot perform the program function received in the query.
This code is returned for an unsuccessful programming request
using function code 13 or 14 decimal. The master should request
diagnostic or error information from the slave.

08/0x08 MEMORY PARITY
ERROR

The slave attempted to read extended memory, but detected a parity
error in the memory. The master can retry the request, but service
may be required on the slave device.

10/0x0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways indicates that the
gateway was unable to allocate an internal communication path from
the input port to the output port for processing the request. This
usually means that the gateway is misconfigured or overloaded.

11/0x0B GATEWAY
TARGET DEVICE
FAILED TO
RESPOND

Specialized use in conjunction with gateways indicates that no
response was obtained from the target device. This usually means
that the device is not present on the network.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

www. kepware.com

48

Modbus Serial Driver Help

Index

A

Address <address> is out of range for the specified device or register. 40
Address Descriptions 21
Address Validation 40
Array size is out of range for address <address>. 40
Array support is not available for the specified address: <address>. 40
Automatic Tag Database Generation 16
Automatic Tag Database Generation Messages 46

B

Bad address in block [<start address> to <end address>] on device <device name>. 44
Bad array spanning [<address> to <address>] on device <device>. 45
BCD 20
Block Size 6
Block Sizes 11
Boolean 20

C

Cable Diagram 7
Channel Setup 5
Channels, maximum 6
Coils 21
Communications error on <channel name> [<error mask>] 42
COMn does not exist. 42
COMn is in use by another application. 42
Could not read Omni text buffer due to memory allocation problem. 45
Could not read Omni text report <address> on device <device name> due to packet limit. 45

D

Daniels S500 Flow Computer Addressing 24
Data Type <type> is not valid for device address <address>. 41
Data Types Description 20
Description truncated for import file record number <record>. 47
Device <device name> is not responding. 43
Device address <address> contains a syntax error. 41
Device address <address> is not supported by model <model name>. 41
Device address <address> is read only. 41
Device ID 6
Device Status Messages 43
Devices, maximum 6
DWord 20
Dynamic Fluid Meter Addressing 25

E

Elliott Flow Computer Addressing 24
Error Descriptions 40
Error Handling 15
Error opening COMn. 43

www. kepware.com

49

Modbus Serial Driver Help

Error parsing import file record number <record> field <field>. 47
Error writing Omni text data to file for <tag name> on device <device name> because <reason>. 46
Exporting Variables from Concept 16
Exporting Variables from ProWORX 18

F

File exception encountered during tag import. 47
Float 20
Framing 13, 42
Function Codes Description 37

I

Imported tag name <tag name> is invalid. Name changed to <tag name>. 47

L

LBCD 20
Long 20

M

Magnetek GPD 515 Drive Addressing 23
Mask. 42
Missing address 41
Modbus Addressing 21
Modbus Exception Codes 48
Modbus Serial Specific Messages 44
Modem Setup 7

N

Network 6
No Omni text archive data available in specified date range on device <device name>. 46

O

Omni Custom Packets 28
Omni Flow Computer Addressing 26
Omni Raw Data Archive 30
Omni Text Archive 36
Omni text output file specified for <tag name> on device <device name> could not be opened because

<reason>. 46
Omni Text Reports 34
Overrun 42
Overview 4

P

Parity 42

www. kepware.com

50

Modbus Serial Driver Help

R

Received block length of <received length> does not match expected length of <expected length> for address
<address> on device <device>. 41

Registers 21

S

Serial Communications 42
Settings 8
Short 20
Statistics Items 38

T

Tag <tag name> could not be imported because data type <data type> is not supported. 47
Tag import failed due to low memory resources. 48

U

Unable to set comm parameters on COMn. 43
Unable to write to <address> on device <device name>. 44
Unable to write to address <address> on device <device>: Device responded with exception code

<code>. 44

V

Variable Import Settings 12

W

Word 20
Write failed for <tag name> on device <device name>. Maximum path length of <number> exceeded. 44
Write to Omni text report <address> on device <device name> truncated. 46

www. kepware.com

51

	Table of Contents
	Modbus Serial Driver Help
	Overview

	Channel Setup
	Device Setup
	Cable Diagram
	Modem Setup
	Settings
	Block Sizes
	Variable Import Settings
	Framing
	Error Handling

	Automatic Tag Database Generation
	Exporting Variables from Concept
	Exporting Variables from ProWORX

	Data Types Description
	Address Descriptions
	Modbus Addressing
	Magnetek GPD 515 Drive Addressing
	Elliott Flow Computer Addressing
	Daniels S500 Flow Computer Addressing
	Dynamic Fluid Meter Addressing
	Omni Flow Computer Addressing
	Omni Custom Packets
	Omni Raw Data Archive
	Omni Text Reports
	Omni Text Archive

	Function Codes Description
	Statistics Items

	Error Descriptions
	Address Validation
	Address <address> is out of range for the specified device or register.
	Array size is out of range for address <address>.
	Array support is not available for the specified address: <address>.
	Data Type <type> is not valid for device address <address>.
	Device address <address> contains a syntax error.
	Device address <address> is not supported by model <model name>.
	Device address <address> is read only.
	Missing address
	Received block length of <received length> does not match expected length of ...

	Serial Communications
	Communications error on <channel name> [<error mask>].
	COMn does not exist.
	COMn is in use by another application.
	Error opening COMn.
	Unable to set comm parameters on COMn.

	Device Status Messages
	Device <device name> is not responding.
	Unable to write to address <address> on device <device>: Device responded wit...
	Unable to write to <address> on device <device name>.
	Write failed for <tag name> on device <device name>. Maximum path length of <...

	Modbus Serial Specific Messages
	Bad address in block [<start address> to <end address>] on device <device name>.
	Bad array spanning [<address> to <address>] on device <device>.
	Could not read Omni text buffer due to memory allocation problem.
	Could not read Omni text report <address> on device <device name> due to pack...
	Error writing Omni text data to file for <tag name> on device <device name> b...
	No Omni text archive data available in specified date range on device <device...
	Omni text output file specified for <tag name> on device <device name> could ...
	Write to Omni text report <address> on device <device name> truncated.

	Automatic Tag Database Generation Messages
	Description truncated for import file record number <record>.
	Error parsing import file record number <record>, field <field>.
	File exception encountered during tag import.
	Imported tag name <tag name> is invalid. Name changed to <tag name>.
	Tag <tag name> could not be imported because data type <data type> is not sup...
	Tag import failed due to low memory resources.

	Modbus Exception Codes

	Index

